DOI QR코드

DOI QR Code

모유수유와 분유수유에 따른 영아 장내 미생물 군집의 특징

Comparison of gut microbial diversity of breast-fed and formula-fed infants

  • 투고 : 2019.07.17
  • 심사 : 2019.08.26
  • 발행 : 2019.09.30

초록

장 내에 존재하는 microbiome은 생활환경, 나이와 섭취하는 음식물에 따라 변하게 된다. 본논문에서는 모유를 섭취한 영아와 분유를 섭취한 영아들에 대한 장내미생물 군집의 변화를 비교하였다. 미생물의 군집변화를 차세대 염기서열 분석기법을 이용하여 분석하였으며 총 80개의 영아 분변을 통해 미생물 군집변화를 확인하였다. 모유그룹(BIG)과 분유그룹(FIG-A, FIG-B, FIG-C)간의 장내세균의 군집을 비교한 결과 BIG에서는 Actinobacteria 문이 전체 군집의 $74.22{\pm}3.48%$로 우점을 차지하였다. 분유그룹의 Actinobacteria 문을 비교하였을 때 FIG-A는 $73.46{\pm}4.12%$였지만 FIG-B와 FIG-C는 $66.52{\pm}5.80%$$68.88{\pm}4.33%$로 BIG와 FIG-A에 비해 낮은 비율을 보였다. 속(genus) 수준에서 살펴보면 Bifidobacterium이 전체 미생물군집에서 가장 높은 비율로 분포하고 있었으며 BIG가 $73.09{\pm}2.31%$로 가장 높았고 FIG-A, FIG-B 및 FIG-C는 각각 $72.25{\pm}4.93%$, $63.81{\pm}6.05%$$67.42{\pm}5.36%$를 차지하였다. Bifidobacterium 종의 경우 모든 그룹에서 Bifidobacterium longum이 우점을 차지하고 있었으며 BIG와 FIG-A가 전체 군집의 $68.77{\pm}6.07%$$66.85{\pm}5.80%$를 차지하였다. 이에 반해 FIG-B와 FIG-C는 각각 $58.94{\pm}6.20%$$61.86{\pm}5.31%$로 BIG와 FIG-A보다 낮은 비율로 분포하는 것을 분석하였다. FIG-A가 섭취한 분유는 Bifidobacterium의 선택적 증식이 우수하다고 알려진 갈락토올리고당, 갈락토실락토스, 시너지올리고당, 비피도올리고 및 장내균총개선소재를 혼합한 5-Bifidus factor 복합물이 포함되어 있다. 이와 같은 5-Bifidus factor라는 유산균에 대한 증식능이 우수한 프리바이오틱스를 혼합하였기 때문에 모유를 섭취한 영아의 장내에 존재하는 Bifidobacterium 속의 군집과 유사하게 나타난 것으로 판단된다.

The intestinal microbiomes vary according to the factors such environment, age and diet. The purpose of this study was to compare the gut microbial diversity between Korean infants receiving breast-fed milk and formula-fed milk. We analyzed microbial communities in stool samples collected from 80 Korean infants using next generation sequencing. Phylum level analysis revealed that microbial communities in both breast-fed infants group (BIG) was dominated by Actinobacteria ($74.22{\pm}3.48%$). Interestingly, the phylum Actinobacteria was dominant in formula-fed infants group A (FIG-A) at $73.46{\pm}4.12%$, but the proportions of phylum Actinobacteria were lower in formulafed infants group B and C (FIG-B and FIG-C) at $66.52{\pm}5.80%$ and $68.88{\pm}4.33%$. The most abundant genus in the BIG, FIG-A, FIG-B, and FIG-C was Bifidobacterium, comprising $73.09{\pm}2.31%$, $72.25{\pm}4.93%$, $63.81{\pm}6.05%$, and $67.42{\pm}5.36%$ of the total bacteria. Furthermore, the dominant bifidobacterial species detected in BIG and FIG-A was Bifidobacterium longum at $68.77{\pm}6.07%$ and $66.85{\pm}4.99%$ of the total bacteria. In contrast, the proportions of B. longum of FIG-B and FIG-C were $58.94{\pm}6.20%$ and $61.86{\pm}5.31%$ of the total bacteria. FIG-A showed a community similar to BIG, which may be due to the inclusion of galactooligosaccharide, galactosyllactose, synergy-oligosaccharide, bifidooligo and improvement material of gut microbiota contained in formula-milk. We conclude that 5-Bifidus factor contained in milk powder promotes the growth of Bifidobacterium genus in the intestines.

키워드

참고문헌

  1. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL, and CHILD Study Investigators. 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185, 385-394. https://doi.org/10.1503/cmaj.121189
  2. Berstad A, Raa J, Midtvedt T, and Valeur J. 2016. Probiotic lactic acid bacteria-the fledgling cuckoos of the gut?. Microb. Ecol. Health Dis. 27, 31557.
  3. Bezirtzoglou E, Tsiotsias A, and Welling GW. 2011. Microbiota profile in feces of breast-and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17, 478-482. https://doi.org/10.1016/j.anaerobe.2011.03.009
  4. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, and Aagaard KM. 2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314-326. https://doi.org/10.1038/nm.4272
  5. Dawood MA, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, and Moss AS. 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol. 49, 275-285. https://doi.org/10.1016/j.fsi.2015.12.047
  6. Depeint F, Tzortzis G, Vulevic J, I'Anson K, and Gibson GR. 2008. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 87, 785-791. https://doi.org/10.1093/ajcn/87.3.785
  7. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI, et al. 2016. Partial restoration of the microbiota of cesareanborn infants via vaginal microbial transfer. Nat. Med. 22, 250-253. https://doi.org/10.1038/nm.4039
  8. Grice EA and Segre JA. 2012. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151-170. https://doi.org/10.1146/annurev-genom-090711-163814
  9. Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, and Gilbert JA. 2014. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38. https://doi.org/10.1186/2049-2618-2-38
  10. Gronlund MM, Gueimonde M, Laitinen K, Kociubinski G, Gronroos T, Salminen S, and Isolauri E. 2007. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37, 1764-1772. https://doi.org/10.1111/j.1365-2222.2007.02849.x
  11. Johnson CL and Versalovic J. 2012. The human microbiome and its potential importance to pediatrics. Pediatrics 129, 950-960. https://doi.org/10.1542/peds.2011-2736
  12. Kumar S, Pandey RK, Negi H, Sharma P, Pandey P, Pandey Y, and Kumar K. 2018. Role of probiotics in health improvement: Adaptations, advantages and their uses. Asian J. Agric. Food Sci. 2, 1-15.
  13. Lee JK, Cho HR, Kim KY, Lim JM, Jung GW, Sohn JH, and Choi JS. 2014. The growth-stimulating effects of fermented rice extract (FRe) on lactic acid bacteria and Bifidobacterium spp. Food Sci. Technol. Res. 20, 479-483. https://doi.org/10.3136/fstr.20.479
  14. Li C, Liu Y, Jiang Y, Xu N, and Lei J. 2017. Immunomodulatory constituents of human breast milk and immunity from bronchiolitis. Ital. J. Pediatr. 43, 8. https://doi.org/10.1186/s13052-017-0326-3
  15. Minami J, Odamaki T, Hashikura N, Abe F, and Xiao JZ. 2016. Lysozyme in breast milk is a selection factor for bifidobacterial colonisation in the infant intestine. Benef. Microbes 7, 53-60. https://doi.org/10.3920/BM2015.0041
  16. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, and Dominguez-Bell, MG. 2015. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109-117. https://doi.org/10.1016/j.molmed.2014.12.002
  17. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, Zabih S, Lincez PJ, Bittinger K, Bailey A, et al. 2017. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171, 647-654. https://doi.org/10.1001/jamapediatrics.2017.0378
  18. Roberfroid MB. 2007. Inulin-type fructans: Functional food ingredients. J. Nutr. 137, 2493-2502. https://doi.org/10.1093/jn/137.11.2493S
  19. Shoaf K, Mulvey GL, Armstrong GD, and Hutkins RW. 2006. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun. 74, 6920-6928. https://doi.org/10.1128/IAI.01030-06
  20. Stavropoulou E, Tsigalou C, and Bezirtzoglou E. 2018. Functions of the human intestinal microbiota in relation to functional foods. Erciyes Med. J. 40, 188-193. https://doi.org/10.5152/etd.2018.18169
  21. Sumiyoshi W, Urashima T, Nakamura T, Arai I, Nagasawa T, Saito T, Tsumura N, Wang B, Brand-Miller J, Watanabe Y, et al. 2004. Galactosyllactoses in the milk of Japanese women: changes in concentration during the course of lactation. J. Appl. Glycosci. 51, 341-344. https://doi.org/10.5458/jag.51.341
  22. Turin CG, Zea-Vera A, Rueda MS, Mercado E, Carcamo CP, Zegarra J, Bellomo S, Cam L, Castaneda A, Ochoa TJ, and NEOLACTO Research Group. 2017. Lactoferrin concentration in breast milk of mothers of low-birth-weight newborns. J. Perinatol. 37, 507-512. https://doi.org/10.1038/jp.2016.265
  23. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, et al. 2012. Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7, e36957. https://doi.org/10.1371/journal.pone.0036957
  24. Tzortzis G, Goulas AK, Gee JM, and Gibson GR. 2005. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J. Nutr. 135, 1726-1731. https://doi.org/10.1093/jn/135.7.1726
  25. Vazquez-Gutierrez P, de Wouters T, Werder J, Chassard C, and Lacroix C. 2016. High iron-sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro. Front. Microbiol. 7, 1480.