DOI QR코드

DOI QR Code

연관규칙을 이용한 상황인식 음악 추천 시스템

A Music Recommendation System based on Context-awareness using Association Rules

  • 오재택 (공주대학교 컴퓨터공학과) ;
  • 이상용 (공주대학교 컴퓨터공학부)
  • Oh, Jae-Taek (Department of Computer Science & Engineering, Kongju National University) ;
  • Lee, Sang-Yong (Division of Computer Science & Engineering, Kongju National University)
  • 투고 : 2019.06.11
  • 심사 : 2019.09.20
  • 발행 : 2019.09.28

초록

최근 추천 시스템은 패션, 동영상, 음악 등을 중심으로 맞춤형 추천 서비스가 제공되어 사용자들의 관심을 모으고 있다. 그러나 이러한 서비스들은 실시간으로 발생하는 상황 정보를 사용하지 않아 여러 상황에 따른 적합한 서비스를 사용자에게 제공하기가 어렵다. 또한 적용되는 상황 정보가 차원을 확장시킬 경우, 데이터 희소성(Data Sparsity)을 증가시켜 사용자들에게 적합한 음악들을 추천할 수 없는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해소시키기 위해 연관규칙(Association Rules)을 적용하여 사용자의 현재 위치 정보와 시간 정보에 대한 관계성 및 규칙들을 이용하여 실시간 상황에서 적합한 음악을 추천하는 시스템을 제안하였다. 수집된 상황 정보를 바탕으로 5-fold Cross Validation을 진행하여 위치와 시간 정보에 따른 추천 시스템의 정확도를 측정하였다. 그 결과 상황 정보가 누적됨에 따라 추천 시스템의 정확도가 향상되는 것을 확인할 수 있었다.

Recently, the recommendation system has attracted the attention of users as customized recommendation services have been provided focusing on fashion, video and music. But these services are difficult to provide users with proper service according to many different contexts because they do not use contextual information emerging in real time. When applied contextual information expands dimensions, it also increases data sparsity and makes it impossible to recommend proper music for users. Trying to solve these problems, our study proposed a music recommendation system to recommend proper music in real time by applying association rules and using relationships and rules about the current location and time information of users. The accuracy of the recommendation system was measured according to location and time information through 5-fold cross validation. As a result, it was found that the accuracy of the recommendation system was improved as contextual information accumulated.

키워드

참고문헌

  1. R. Scoble & S. Israel. (2015). Age of Context. Goyang: JiAndSon.
  2. E. N. Ko. (2015). New an Introduction to Information and Communication. Seoul: Hanbit Academy.
  3. S. Masanori. (2017). New IT Trend. Seoul: Infopub.
  4. H. Y. Ko & N. G. Kim. (2019). Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN. Journal of Convergence for Information Technology, 9(5), 21-26. https://doi.org/10.22156/CS4SMB.2019.9.5.021
  5. I. B. Yang. (2019). A study on Driver-vehicle Interface for Cooperative Driving. Journal of Convergence for Information Technology, 9(5), 27-33. https://doi.org/10.22156/CS4SMB.2019.9.5.027
  6. H. S. Choi & Y. H. Cho. (2019). Analysis of Security Problems of Deep Learning Technology. Journal of the Korea Convergence Society, 10(5), 9-16. https://doi.org/10.15207/JKCS.2019.10.5.009
  7. D. B. Lee & J. H. Seo. (2019). Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection. Journal of the Korea Convergence Society, 10(5), 35-42. https://doi.org/10.15207/JKCS.2019.10.5.035
  8. Apple Inc. (2019). https://www.apple.com/kr/apple-music/features
  9. M. Unger. (2015). Latent Context-aware Recommender Systems. RecSys' 15 Proceediing of the 9th ACM Conference on Recommender Systems, 383-386.
  10. M. Unger, A. Bar, B. Shapira & L. Rokach. (2016). Toward Latent Context-aware Recommendation Systems. Knowledge-Based Systems, 104(2016), 165-178. https://doi.org/10.1016/j.knosys.2016.04.020
  11. S. Rendle, Z. Gantner, C. Freudenthaler & L. Schmidt-Thieme. (2011). Fast Context-aware Recommendations with Factorization Machines. SIGIR' 11 Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 635-644.
  12. J. M. Luna, M. Pechenizkiy, M. J. D. Jesus & S. Ventura. (2018). Mining Context-aware Association Rules using Grammar-based Genetic Programming. IEEE Transactions on Cybernetics, 48(11), 3030-3044. https://doi.org/10.1109/TCYB.2017.2750919
  13. M. Schedl. (2013). Ameliorating Music Recommendation: Integrating Music Content, Music Context, and User Context for Improved Music Retrieval and Recommendation. MoMM' 13 Proceedings of International Conference on Advances in Mobile Computing & Multimedia, 3-10.
  14. M. B. Magara, S. Ojo, S. Ngwira & T. Zuva. (2016). Mplist: Context-aware Music Playlist. 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, 309-316.
  15. N. M. Villegas, C. Sanchez, J. Diaz-Cely & G. Tamura. (2017). Characterizing Context-aware Recommender Systems: A Systematic Literature Review. Knowledge-based Systems, 140(15), 173-200.
  16. N. R. Kim, H. B. Bang, B. Kim, S. H. Lee & J. H. Lee. (2016). Research Trends in Context-aware Recommender Systems. Communications of KIISE, 34(6), 22-29.
  17. S. K. Gorakala. (2017). Building Recommendation Engines. Seoul: Acorn.
  18. J. Han, M. Kamber & J. Pei. (2015). Data Mining: Concepts and Techniques. UiWang: Acorn.
  19. M. Yao, B. Cao & J. Yin. (2011). Process Recommendation based on Association Rules and Transaction Context. 2011 International Conference on Internet Technology and Applications, 1-5.
  20. J. Bell. (2016). Machine Learning. Seoul: Gilbut.
  21. S. W. Kim. (2017). Step-by-step Android Programming. Seoul: Hanbit Academy.
  22. Naver Corp. (2019). A Music Genre Encyclopedia. https://terms.naver.com/list.nhn?cid=62892&categoryId=62892&so=st1.dsc&viewType=&categoryType=
  23. Kakao Corp. (2019) https://www.melon.com/
  24. I. K. Cheon. (2015). Android Programming. Paju: SaengNeung.