DOI QR코드

DOI QR Code

무선 홈 네트워킹 서비스를 위한 스마트 캐싱 기법

A Smart Caching Scheme for Wireless Home Networking Services

  • 이종득 (전북대학교 전자공학부)
  • Lee, Chong-Deuk (Division of Electronic Engineering, Chonbuk National University)
  • 투고 : 2019.02.27
  • 심사 : 2019.09.20
  • 발행 : 2019.09.28

초록

무선 홈 프록시에서 미디어 객체 세그먼트들에 대한 식별은 캐싱 지연에 중요한 영향을 미치게 되며, 캐싱 지연은 프록시의 성능을 떨어뜨리는 원인을 제공한다. 본 논문에서는 홈 네트워크의 프록시 성능을 향상시키고 미디어 객체 세그먼트들에 대한 캐싱 성능을 향상시키기 위하여 SFSC(Single Fetching Smart Caching)전략과 MFSC(Multi-Fetching Smart Caching)전략을 제안한다. SFSC전략은 홈 노드가 요청한 객체 세그먼트를 한 번에 하나씩 순차적으로 패칭하여 캐싱을 수행하는 기법으로서 보다 빠른 캐시 히트율을 보장해 주는 기법이며, MFSC전략은 홈 노드가 요청한 객체 세그먼트를 한 번에 여러 개씩 block화하여 캐시하는 기법으로서 처리율을 향상시키기 위한 기법이다. 시뮬레이션 결과 SFSC기법은 MFSC기법에 비해서 캐시 히트율과 캐싱 지연이 보다 효율적임을 알 수 있었으며, 반대로 객체 세그먼트에 대한 처리율은 MFSC기법이 SFSC기법에 비해서 보다 효율적임을 알 수 있었다.

Discrimination of media object segments in wireless home proxies has a significant impact on caching delay, and caching delay degrades the performance of the proxy. In this paper, we propose a Single Fetching Smart Caching (SFSC) strategy and a Multi-Fetching Smart Caching (MFSC) strategy to improve the proxy performance of the home network and improve the caching performance for media object segments. The SFSC strategy is a technique that performs caching by sequential fetching of object segments requested by the home node one at a time, which guarantees a faster cache hit rate, and the MFSC strategy is a technique that caches the media object segments by blocking object segments requested by the home node one at a time, which improves the throughput of cache. Simulation results show that the cache hit rate and the caching delay are more efficient than the MFSC technique, and the throughput of the object segment is more efficient than that of the SFSC technique.

키워드

참고문헌

  1. C. D. Lee. (2017). An adaptive traffic interference control system for wireless home IoT services. The Society of Digital Policy & Management, 15(4), 259-266.
  2. C. D. Lee. (2012). Proxy-based caching optimization for mobile Ad Hoc streaming services. The Society of Digital Policy & Management, 10(4), 207-216.
  3. H. R. Kang. (2018). A study on the UI/UX design of object control application using wireless communication. The Society of Digital Policy & Management, 16(1), 281-286.
  4. C. D. Lee & G. K. Lee. (2016). An alpha cut (${\alpha}$-cut) filter-based proxy caching control for wireless coverage streaming services. Wireless Personal Communications, 86(1), 35-55. https://doi.org/10.1007/s11277-015-3032-8
  5. O. Nouri. B. Imen. G. Amina, Z. Faouzi & S. O. Mohammad. (2018). Smart mobility management in 5G heterogeneous networks. IET, 7(3), 119-128.
  6. S. K. Park. (2016). Proposal of a mobility management scheme for sensor nodes in IoT. Journal of Convergence Society for SMB, 6(4), 59-64. https://doi.org/10.22156/CS4SMB.2016.6.4.059
  7. G. shahram & S. shahin. (2011). Domical cooperative caching for streaming media in wireless home networks. ACM Transactions on Multimedia Computing, Communications, and Applications, 7(4), 1-17.
  8. Z. Kan, H. Fanglong W. Wenbo, X. Wei & M. Dohler. (2012). Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Communications Magagine. 50(7), 184-192.
  9. S. Y. Lien, T. H. Liau, C. Y. Kao & K. C. Chen. (2012). Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 11(1), 27-32. https://doi.org/10.1109/TWC.2011.111611.110350
  10. M. A. Naeem, R. Ali, B. S. kim, S. A. Nor & S. Hassan. (2018). A periodic caching strategy solution for the smart city in information-centric internet of things. Sustainability, doi:10.3390/su10072576
  11. E. B. Choi & S. J. Lee. (2016). Access control mechanism based on MAC for cloud convergence. Journal of the Korean Convergence Society, 7(1), 1-8.
  12. C. D. Lee. (2012). A distributed domain document object management using semantic reference relationship. The Society of Digital Policy & Management, 10(5), 267-274.
  13. W. Ma & D. H. C. Du. (2004). Design a progressive video caching policy for video proxy servers. IEEE Transactions on Multimedia, 6(4), 599-610. https://doi.org/10.1109/TMM.2004.830819
  14. S. Paknikar, M. Kankanhalli, K. R. Ramakrishnan, S. H. Srinivasan & L. H. Ngoh. (2000). A caching and streaming framework for mulitmedia. In Proceedings of the eighth ACM international conference on Multimedia, pp. 13-20, New York, NY, USA.
  15. K. Wu, P. S. Yu & J. L. Wolf. (2001). Segment-based proxy caching of multimedia streams. '01 Proceedings of the 10th international conference on World Wide Web, pp. 36-44.
  16. N. S. Vo, T. Q. Duong, M. Guizani & A. Kortun. (2018). 5G optimized caching and downlink resource sharing for smart cities. IEEE ACCESS, 6(1), 31457-31468. https://doi.org/10.1109/ACCESS.2018.2839669
  17. Y. Chae, K. Guo, M. Buddhikot, S. Suri & E. Zegura. (2002). Silo, Rainbow, and caching token: Schemes for scalable, fault tolerant stream caching. IEEE Journal on Selected Areas in Communications, 20(7), 1328-1344. https://doi.org/10.1109/JSAC.2002.802062
  18. S. Jin, A. Bestavros & A. Iyengar. (2003). Network-aware partial caching for internet streaming media. Multimedia Systems, 9(4), 386-396. https://doi.org/10.1007/s00530-003-0109-0
  19. S. Ghandeharizadeh & S. Shayandeh. (2008). Cooperative caching techniques for continuous media in wireless home networks. '08 Proceedings of the 1st international conference on Ambient media and systems, pp. 1-8.