References
- GAMA. (2016). 2016 General Aviation Statistical Databook & 2017 Industry Outlook, America, General Aviation Manufacturers Association.
- GOV. UK. (2015). Number of fatalities resulting from road accidents in Great Britain table. https://www.gov.uk/government/publications/annual-road-fatalities
- ICAO. International Investigation Standards. http://www.icao.org/icao/en/cat.htm
- S. B. Hong, W. Y. Kim & Y. C. Choi. (2012). The Trend Analysis about Aviation Accident and Incident in Korea Using the ECCAIRS Data. The journal of Korea Navigation Institute, 16(4), 687-696.
- W. Kim, S. Hong, M. Jie, G. Hong, D. Ahn & C. Choi. (2013). Analysis of Aviation Accident and Incident in Military Using the ECCAIRS 5. Journal of the Korean Society for Aviation and Aeronautics, 21(1), 80-86. https://doi.org/10.12985/ksaa.2013.21.1.080
- T. Roh & J. Park. (2014). An Explanatory Study on Air Accident Analyses and Strategy for Improvement in Air Safety. Journal of the Aviation Management Society of Korea, 12(4), 95-124.
- J. Chae. (2014). A study of the application of Big data analytics in Aviation Safety, master dissertation, Ewha Womans University, Seoul.
- A. Lukacova, F. Babic & J. Parali. (2014). Building the Prediction Model from Aviation Incident Data. IEEE 12th International Symposium on Applied Machine Intelligence and Information, 365-369.
- F. Gurbuz, L. Ozbakir & H. Yapici. (2009). Classification rule discovery for the aviation incidents resulted in fatality. Knowledge-based system, 22(8), 622-632. https://doi.org/10.1016/j.knosys.2009.06.013
- Z. Nareri, G. Donohue & L. Sherry. (2008). Analyzing Relationships Between Aircraft Accidents and Incidents - A data Mining Approach. In proceeding of Third International Conference on Research in Air Transportation, Virginia, US, 185-190.
- A. A. Christopher & S. A. alias Balamurugan. (2014). Prediction of warning level in aircraft accidents using data mining techniques. The Aeronautical Journal, 118(1206), 935-951. https://doi.org/10.1017/S0001924000009623
- A. D. Voogt & R. A. V. Doorn. (2007). Helicopter accident: Data-mining the NTSB database. European Rotorcraft Forum 33.
- K. Iwadare. (2015). Statistical Data Analyses on Aircraft Accidents in Japan: Occurrences, Causes and Countermeasures. American Journal of Operations Research, 5(3), 222-245. https://doi.org/10.4236/ajor.2015.53018
- NTSB. Aviation Accident Database. http://www.ntsb.gov/
- FAA. Accident and Incident Data System. http://www.asias.faa.gov/
- J. Lee. (2014). A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing. Journal of Digital Convergence, 12(11), 257-264. https://doi.org/10.14400/JDC.2014.12.11.257
- J. Oh & S. Choi. (2018). An Analysis of the Characteristics of Companies Introducing Smart Factory System Using Data Mining Technique. Journal of the Korea Convergence Society, 9(5), 179-189. https://doi.org/10.15207/JKCS.2018.9.5.179
- J. Lee & H. Lee. (2018). Meltdown Threat Dynamic Detection Mechanism using Decision- Tree based Machine Learning Method. Journal of Convergence for Information Technology, 8(6), 209-215. https://doi.org/10.22156/CS4SMB.2018.8.6.209
- M. Park. (2018). Determinant of the Elderly Poverty Using Decision Tree Analysis. Journal of Digital Convergence, 16(7), 63-69. https://doi.org/10.14400/JDC.2018.16.7.063