References
- H. Zhao, Y. Ge, Q. Liu, G. Wang, E. Chen, & Zhang. (2017). P2P lending survey: platforms, recent advances and prospects. ACM Transactions on Intelligent Systems and Technology (TIST), 8(6), 72. DOI : 10.1145/3078848
- C. Serrano-Cinca & B. Gutiurrez-Nieto. (2016). The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending. Decision Support Systems, 89, 113-122. DOI : 10.1016/j.dss.2016.06.014
- M. Malekipirbazari & V. Aksakalli. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42(10), 4621-4631. DOI : 10.1016/j.eswa.2015.02.001
- R. Emekter, Y. Tu, B. Jirasakuldech & M. Lu. (2015). Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Applied Economics, 47(1), 54-70. DOI : 10.1080/00036846.2014.962222
- Y. Guo, W. Zhou, C. Luo, C. Liu & H. Xiong. (2016). Instance-based credit risk assessment for investment decisions in P2P lending. European Journal of Operational Research, 249(2), 417-426. DOI : 10.1016/j.ejor.2015.05.050
- A. Byanjankar, M. Heikkill & J. Mezei. (2015, December). Predicting credit risk in peer-to-peer lending: A neural network approach. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 719-725). IEEE. DOI : doi.org/10.1109/SSCI.2015.109
- J. Abellion & J. G. Castellano. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems with Applications, 73, 1-10. DOI : 10.1016/j.eswa.2016.12.020
- S. Lessmann, B. Baesens, H. V. Seow & L. C. Thomas. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124-136. DOI : 10.1016/j.ejor.2015.05.030
- I. Brown & C. Mues. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446-3453. DOI : 10.1016/j.eswa.2011.09.033
- N. V. Chawla, K. W. Bowyer, L. O. Hall & W. P. Kegelmeyer. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. DOI : 10.1613/jair.953
- K. K. Lai, L. Yu, S. Wang & L. Zhou. (2006, September). Credit risk analysis using a reliability-based neural network ensemble model. In International Conference on Artificial Neural Networks (pp. 682-690). Springer, Berlin, Heidelberg. DOI : 10.1007/11840930_71
- L. Yu, X. Yao, S. Wang & K. K. Lai. (2011). Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection. Expert Systems with Applications, 38(12), 15392-15399. DOI : 10.1016/j.eswa.2011.06.023
- L. Yu, S. Wang & J. Cao. (2009). A modified least squares support vector machine classifier with application to credit risk analysis. International Journal of Information Technology & Decision Making, 8(04), 697-710. DOI : 10.1142/S0219622009003600
- Y. Wang, S. Wang & K. K. Lai. (2005). A new fuzzy support vector machine to evaluate credit risk. IEEE Transactions on Fuzzy Systems, 13(6), 820-831. DOI : 10.1109/TFUZZ.2005.859320
- W. E. Henley & D. J. Hand. (1996). A K-Nearest-Neighbour Classifier for Assessing Consumer Credit Risk. Journal of the Royal Statistical Society: Series D (The Statistician), 45(1), 77-95. DOI : 10.2307/2348414
- G. Wang, J. Ma, L. Huang & K. Xu. (2012). Two credit scoring models based on dual strategy ensemble trees. Knowledge-Based Systems, 26, 61-68. DOI : 10.1016/j.knosys.2011.06.020
- G. Wang, J. Hao, J. Ma & H. Jiang. (2011). A comparative assessment of ensemble learning for credit scoring. Expert systems with applications, 38(1), 223-230. DOI : 10.1016/j.eswa.2010.06.048
- C. Luo, D. Wu & D. Wu. (2017). A deep learning approach for credit scoring using credit default swaps. Engineering Applications of Artificial Intelligence, 65, 465-470. DOI : 10.1016/j.engappai.2016.12.002
- J. Sun, J. Lang, H. Fujita & H. Li. (2018). Imbalanced enterprise credit evaluation with DTE-SBD: decision tree ensemble based on SMOTE and bagging with differentiated sampling rates. Information Sciences, 425, 76-91. DOI : 10.1016/j.ins.2017.10.017
- L. Zhang & W. Wang. (2011, September). A re-sampling method for class imbalance learning with credit data. In 2011 International Conference of Information Technology, Computer Engineering and Management Sciences, 1, 393-397. DOI : 10.1109/ICM.2011.34
- B. E. Boser, I. M. Guyon & V. N. Vapnik. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). ACM. DOI : 10.1145/130385.130401
- H. Byun & S. W. Lee. (2003). A survey on pattern recognition applications of support vector machines. International Journal of Pattern Recognition and Artificial Intelligence, 17(3), 459-486. DOI : 10.1142/S0218001403002460
- M. Huang, C. Chen, W. Lin, S. Ke & C. Tsai. (2017). SVM and SVM Ensembles in Breast Cancer Prediction. PLOS ONE, 12(1), 1-14. DOI : 10.1371/journal.pone.0161501
- I. H. Witten, E. Frank, M. A. Hall & C. J. Pal. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
- D. W. Aha, D. Kibler & M. K. Albert. (1991). Instance-based learning algorithms. Machine learning, 6(1), 37-66. DOI : 10.1007/BF00153759
- Y. LeCun, Y. Bengio & G. Hinton. (2015). Deep learning. Nature, 521(7553), 436. DOI : 10.1038/nature14539
- I. Goodfellow, Y. Bengio & A. Courville. (2016). Deep learning. MIT press.