DOI QR코드

DOI QR Code

빅데이터 분석기법을 활용한 아파트 가격 관련 뉴스 기사의 극성 분석

A Study on the Polarity of Apartment Price News Using Big Data Analysis Method

  • 조상연 (상명대학교 일반대학원 부동산학과) ;
  • 홍은표 (상명대학교 경제금융학부)
  • Cho, Sang-Yeon (Department of Real Estate, The Graduate School, Sangmyung University) ;
  • Hong, Eun-Pyo (Department of Economics and Finance, Sangmyung University)
  • 투고 : 2019.07.10
  • 심사 : 2019.09.20
  • 발행 : 2019.09.28

초록

본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.

This study confirms the polarity of news articles on apartment prices using Opinion Mining which has widely been used for a big data analysis. The analyses were carried out utilizing internet news articles posted on the Naver for two years: 2012 and 2018. We proposed a sentiment analysis model and modeled a topic-oriented sentiment dictionary construction methods. As a result of analyzing the proposed sentiment analysis model, it was confirmed that there was a difference according to the tendency of the media companies in selecting social issues at the time of rising apartment prices. At the same time, we were able to find more affirmative articles in the media companies which share similar sentiment with the government in charge. In this paper, we proposed a sentiment analysis model that can be used in real estate field and analyzed the polarity of unformatted data related to real estate. In order to integrate them into various fields in the future, it is necessary to build the sentiment dictionaries by themes, as well as to collect various unformatted data over extended periods.

키워드

참고문헌

  1. N. D. Kim. (2018). Trend Korea 2019. Seoul : The Window of Future.
  2. Korea Development Bank. (2016. Oct). The Rise of Big Data Industry and Implications. Monthly KDB Survery Report, 731, 82-102.
  3. Korea Development Bank. (2017. Sep). Change The Trend of The Real Estate Market with Big Data. Weekly KDB Report, Issue Brief, 8-11.
  4. J. I. Kyung. (2014). Big Data Utilization Scheme of The Real Estate Sector and Policy Recommendations. Journal of The Korea Real Estate Management, 10, 65-67.
  5. W. Paik, M. H. Kyoung, K. S. Min, H. R. Oh, C. Lim & M. S. Shin. (2007). Multi-Stage News Classification System for Predicting Stock Price Changes. Journal of The Korean Society for Information Management, 24(2), 123-141. https://doi.org/10.3743/KOSIM.2007.24.2.123
  6. J. I. Kyung & K. C. Lee. (2016). Development of Sentiment Analysis of Real Estate Big data by Using Textmining. Housing Studies Review, 24(4), 115-136.
  7. S. H. Yang. (2012). The Changing News Framing in Korean Journalism -Focused on Comparing The Reports about KORUS FTA on The Chosun Ilbo, The Seoul Shinmun and The Hankyoreh. Doctoral Dissertation. Sungkunkwan University, Seoul.
  8. Wilson, Theresa, Janyce Wiebe & Rebecca Hwa. (2004). Just how mad are you? Finding Strong and Weak Opinion. aaai, 4.
  9. Esuli, Andrea & F. Sebasttiani. (2005). Determining The Semantic Orientation of Terms through Gloss Classification. ACM.
  10. Y. S. Kim. (2012). News Big Data Opinion Mining Model for Predicting KOSPI Movement. Doctoral Dissertation. Kookmin University, Seoul.
  11. E. J. Yu, Y. S. Kim, N. G. Kim & S. R. Jeong. (2013). Predicting The Direction of The Stock Index by Using a Domain-Specific Sentiment Dictionary. Korea Intelligent Information Systems Society, 19(1), 95-110. https://doi.org/10.13088/jiis.2013.19.1.095
  12. K. B. Kim. (2016). News Big Data Opinion Mining Model for Predicting KOSPI Movement. Doctoral Dissertation. Soongsil University, Seoul.
  13. J. H. LEE. (2018). Cambridge Analytical Scandal Over Facebook. Economy Chosun, 245.
  14. W. S. Kim, J. H. Lee, J. W. Park & J. H. Choi. (2014). A Technique of The Approval Rating Analysis for Political Party Using Opinion Mining. Korean Institute of Information Technology, 12(10), 133-141.
  15. Y. N. Lee, E. J. Choi & M. J. Kim. (2018). Analysis of The Influence of Presidential Candidate's SNS Reputation on Election Result: Focusing on 19th Presidential Election. Journal of Digital Convergence, 16(2), 195-201. https://doi.org/10.14400/JDC.2018.16.2.195
  16. S. W. Kim & N. K. Kim. (2013). A Study on The Effect of Using Sentiment Lexicon, Korea Intelligent Information Systems Society, 121-128.
  17. Korea Appraisal Board. (2019. Feb). Transaction-Based Price Indices for The Multi-Unit Housing Market, 116072, 1-2.
  18. M. H. Jang & H. S. Kim. (2019). A Research on Fluctuations of Housing Prices Using Text Mining. Journal of The Korea Housing Association, 30, 35-42. https://doi.org/10.6107/JKHA.2019.30.2.035
  19. J. C. Choi. (2018). Big Data Patent Analysis Using Social Network Analysis. Journal of the Korea Convergence Society, 9(2), 251-257. https://doi.org/10.15207/JKCS.2018.9.2.251
  20. Y. B. Cho, S. H. Woo & S. H. Lee. (2013). In Small and Medium Business the Government 3.0-based Big Data Utilization Policy. Journal of Convergence for Information Technology, 3(1), 15-22.