DOI QR코드

DOI QR Code

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems

미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교

  • Bae, Seo Jun (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • Received : 2019.03.16
  • Accepted : 2019.04.23
  • Published : 2019.10.01

Abstract

In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

본 연구에서는 미세유체 시스템 제작에 적합한 3D 프린팅 방식 및 소재 별 표면특성 분석을 통해 각 응용 사례에 적합한 프린터 및 소재 선정에 가이드라인을 줄 수 있는 기초 연구를 수행하였다. 가장 보편적으로 사용되는 적층 방식과 해상도가 상대적으로 높은 광경화 방식에 대해 프린팅 방식과 소재에 따른 표면 특성을 살펴보았다. 적층 방식의 프린트물은 소재에 무관하게 후처리 전에는 친수성 특성을 보이나 아세톤 증기에 의한 후처리 후에는 소수성 특성을 보임을 확인할 수 있었다. SEM을 이용한 표면 조도 관찰을 통해 이러한 접촉각의 변화가 후처리에 의한 표면의 결 구조의 제거에 기인한 것임을 확인하였다. 광경화식 프린트물은 적층식 대비 친수성의 특성을 보였으나 소수성 코팅을 이용해 표면 개질이 가능함을 실험적으로 확인하였다. 두 프린팅 방식 중 투명한 재질이 요구되는 경우, 적층 방식은 투명한 시편을 만드는 것이 불가능함을 확인하였으며 광경화 방식의 경우 충분한 투명도가 확보됨을 확인하였다. 액적 접촉충전 현상에 기반한 디지털 전기천공 시스템의 electroporation chip을 광경화 방식으로 제작하였으며 성공적으로 전기천공을 시연함으로써 미세유체 시스템에 직접 적용이 가능함 또한 확인하였다.

Keywords

References

  1. Almada-Lobo, F., "The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES)," J. Innov. Manag., 3(4), 16-21(2015). https://doi.org/10.24840/2183-0606_003.004_0003
  2. Maynard, A. D., "Navigating the Fourth Industrial Revolution," Nat. Nanotechnol., 10(12), 1005-1011(2015). https://doi.org/10.1038/nnano.2015.286
  3. Duballet, R., Baverel, O. and Dirrenberger, J. "Classification of Building Systems for Concrete 3D Printing," Autom. Constr., 83, 247-258(2017). https://doi.org/10.1016/j.autcon.2017.08.018
  4. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. and Spence, D. M., "Evalutation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences," Anal. Chem., 86(7), 3240-3253(2014). https://doi.org/10.1021/ac403397r
  5. Bhatia, S. N. and Ingber, D. E., "Microfluidic Organs-on-chips," Nat. Biotechnol., 32, 760-772(2014). https://doi.org/10.1038/nbt.2989
  6. Rupal, B. S., Garcia, E. A. Ayranci, C. and Qureshi, A. J., "3D Printed 3D-Microluidics: Recent Developments and Design Challenges," J. Interg. Design & Process Sci., 1-16(2018).
  7. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B. and Breadmore, M. C., "3D Printed Microfluidic Devices: Enablers and Barriers," Lab Chip, 16(11), 1993-2013(2016). https://doi.org/10.1039/C6LC00284F
  8. Chen, C., Mehl, B. T., Munshi, A. S., Townsend, A. D., Spence, D. M. and Martin, R. S., "3D Printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review," Anal. Methods, 8(31), 6005-6012(2016). https://doi.org/10.1039/C6AY01671E
  9. Ho, C. M., Ng, S. H., Li K. H. and Yoon, Y. H., "3D Printed Microfluidics for Biological Applications," Lab Chip, 15(18), 3627-3637(2015). https://doi.org/10.1039/C5LC00685F
  10. Sochol, R. D., Sweet, E., Glick, C. C., Venkatesh, S., Aventisyan, A., Ekman, K. F., Raulinaitis, A., Tsai, A., Wienkers, A., Korner, K., Hanson, K., Long, A., Hightower, B. J., Slatton, G., Burnett, D. C., Massey, T. L., Iwai, K., Lee, L. P., Pister, K. S. J. and Lin, L., "3D Printed Microfluidic Circuitry Via Multijet-based Additivie Manufacutring," Lab Chip, 16(4), 668-678(2016). https://doi.org/10.1039/C5LC01389E
  11. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V. and Cronin, L., "Configurable 3D-Printed Millifluidic and Microfluidic 'lab on a chip' Reactionware Devices," Lab Chip, 12(18), 3267-3271(2012). https://doi.org/10.1039/c2lc40761b
  12. Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Droplet in a Dielectric Liquid for Droplet Actuation," Anal. Chem., 83(8), 5168-5174(2011). https://doi.org/10.1021/ac200248x
  13. Im, D. J., Ahn, M. M., Yoo, B. S., Moon, D., Lee, D. W. and Kang, I. S., "Discrete Electrostatic Charge Transfer by the Electrophoresis of a Charged Droplet in a Dielectric Liquid," Langmuir, 28, 11656-11661(2012). https://doi.org/10.1021/la3014392
  14. Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Charged Droplets," Anal. Chem., 85, 4038-4044(2013). https://doi.org/10.1021/ac303778j
  15. Choi, C. Y. and Im, D. J., "Contact Charging and Electrophoresis of a Glassy Carbon Microsphere," Korean Chem. Eng. Res., 54(4), 568-573(2016). https://doi.org/10.9713/kcer.2016.54.4.568
  16. Yang, S. H. and Im, D. J., "Electrostatic Origins of the Positive and Negative Charging Difference in the Contact Charge Electrophoresis of a Water Droplet," Langmuir, 33(48), 13740-13748(2017). https://doi.org/10.1021/acs.langmuir.7b03281
  17. Im, D. J., Jeong, S.-N., Yoo, B. S., Kim, B., Kim, D.-P., Jeong, W.-J. and Kang, I. S., "Digital Microfluidic Approach for Efficient Electroporation with High Productivity: Transgene Expression of Microalgae without Cell Wall Removal," Anal. Chem., 87(13), 6592-6599(2015). https://doi.org/10.1021/acs.analchem.5b00725
  18. Im, D. J., "Delivery of Protein into Microalgae by the Digital Electroporation," Korean Chem. Eng. Res., 56(1), 79-84(2018). https://doi.org/10.9713/kcer.2018.56.1.79
  19. Im, D. J. and Jeong, S.-N., "Transfection of Jurkat T cells by Droplet Electroporation," Biochem. Eng. J., 122, 133-140(2017). https://doi.org/10.1016/j.bej.2017.03.010
  20. Kurita, H., Takahashi, S., Asada, A., Matsuo, M., Kishikawa, K., Mizuno, A., Numano, R., "Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor," PLOS ONE, 10(12), e0144254(2015). https://doi.org/10.1371/journal.pone.0144254
  21. Kim, Y. H., Kwon, S. G., Bae, S. J., Park, S. J., Im, D. J., "Optimization of the Droplet Electroporation Method for Wild Type Chlamydomonas Reinhardtii Transformation," Bioelectrochemistry, 126, 29-37(2019). https://doi.org/10.1016/j.bioelechem.2018.11.010
  22. Yoo, B. S., Im, D. J., Ahn, M. M., Park, S. J., Kim, Y. H., Um, T. W., and Kang, I. S., "A Continuous Droplet Electroporation System for High Throughput Processing," Analyst, 143(23), 5785-5791(2018). https://doi.org/10.1039/C8AN01259H
  23. Kim, Y. H. and Im, D. J., "Control of the Culture Conditions of Chlamydomonas Reinhardtii for Efficient Delivery of Exogenous Materials in Electroporation," Algal Research, 35, 388-394(2018). https://doi.org/10.1016/j.algal.2018.09.010
  24. Gao, H., Kaweesa, D. V., Moore, J. and Meisel, N.A., "Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts," JOM, 69(3), 580-585(2017). https://doi.org/10.1007/s11837-016-2214-5
  25. Prajitno, D. H., Maulana, A. and Syarif, D. G., "Effect of Surface Roughness on Contact Angle Measurement of Nanofluid on Surface of Stainless Steel 304 by Sessile Drop Method," J. Phys.: Conference Series, 739, 012029(2016). https://doi.org/10.1088/1742-6596/739/1/012029