DOI QR코드

DOI QR Code

Numerical Study on the Reduction of Blast-induced Damage Zone

최외곽공 주변암반의 발파굴착 손상영역 저감에 관한 수치해석적 연구

  • 박세웅 (전북대학교 자원.에너지공학과) ;
  • 오세욱 (전북대학교 자원.에너지공학과) ;
  • 민경조 (전북대학교 자원.에너지공학과) ;
  • ;
  • 조상호 (전북대학교 자원.에너지공학과)
  • Received : 2019.09.22
  • Accepted : 2019.09.26
  • Published : 2019.09.30

Abstract

Controlling the blast-induced damage zone(BDZ) in mining excavation is a significant issue for the safety of employees and the maintenance of facilities. Numerous studies have been conducted to accurately predict the BDZ in underground mining. This study employed the dynamic fracture process analysis (DFPA) to estimate the BDZ from a single hole blasting. The estimated BDZ were compared with the results obtained by Swedish empirical equation. The DFPA was also used to investigate the control mechanism of BDZ and fracture plane formation around perimeter holes for underground mining blasting.

지하광산의 갱내 굴착 과정에서 폭약을 사용하여 발파하는 경우, 최외곽공의 폭력을 조절하여 외부 암반의 손상도 감소와 원활한 파단면을 형성하는 작업은 종업자의 안전 및 작업능률을 향상시키는 결과를 가져올 수 있다. 본 연구는 2차원의 동적파괴과정해석기법인 DFPA-2D 코드를 사용하여 단일 장약공에서 발파 시, 장약공의 직경과 디커플링 지수에 따라 생성되는 균열손상범위를 수치해석적으로 확인하였고 Sweden의 발파손상영역 경험식을 이용하여 암반손상범위를 예측하고 DFPA 해석결과와 비교하였다. 추가로 DFPA코드를 지하채광발파의 최외곽공 발파균열예측에 적용하여 파단면형성 및 발파손상발생 메커니즘에 대하여 검토하였다.

Keywords

References

  1. Cho, S. H. and K. Kaneko, 2004, Influence of the applied pressure waveform on the dynamic fracture processes in rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 41. No. 5, pp. 771-784. https://doi.org/10.1016/j.ijrmms.2004.02.006
  2. Cho, S. H. and K. Kaneko, 2004, Rock fragmentation control in blasting, Materials Transactions, Vol. 45, pp. 1722-1730. https://doi.org/10.2320/matertrans.45.1722
  3. Cho, S. H., Y. Y. Jeong, K. Y. Kim, K. Kaneko, 2009. Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method. Tunneling & Underground Space, Vol. 19, No. 4, pp. 366-372.
  4. Iverson, S. R., W. A. Hustrulid and J. C. Johnson, 2013, A new perimeter control blast design concept for underground metal/nonmetal drifting applications, Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Report of Investigations 9691.
  5. Japan Explosive Society, 2001, Blast engineering handbook for field engineers, Tokyo Kyoritsu shuppan.
  6. Lee, E., M. Finger and W. Collins, 1973, JWL equation of state coefficients for high explosives, Lawrence Livermore National Lab(LLNL), No. UCID-16189.
  7. Min, G. J., S. W. Park, S. W. Oh, S. H. Cho, B. H. Kim, and D. Fukuda, 2019, Dynamic Fracture Process Analysis of Controlled Blasts to Minimize the Excavation Damage zone in Underground Excavations, American Rock Mechanics Association 19-0307, New York.
  8. Ouchterlony, F., M. Olsson and I. Bergqvist, 2002, Towards New Swedish Recommendations for Cautious Perimeter Blasting, Fragblast, Vol. 6, No. 2, pp. 235-261. https://doi.org/10.1076/frag.6.2.235.8666
  9. Pappas, D. M., and L. J. Prosser, 2003, Ground fall injuries in underground stone mines, National Institute for Occupational Safety and Health.
  10. Sanchidrian, J. A., R. Castedo, L. M. Lopez, P. Segarra and A. P. Santos, 2015, Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data, Central European journal of energetic materials, Vol. 12, No. 2, pp. 177-194.
  11. Weibull, W., 1951, Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, Vol. 18, pp. 293-297. https://doi.org/10.1115/1.4010337