DOI QR코드

DOI QR Code

계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area

  • 석희준 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 손봉호 ((주)지앤에스엔지니어링) ;
  • 박성민 ((주)지앤에스엔지니어링) ;
  • 전병훈 (한양대학교 자원환경공학과)
  • Suk, Heejun (Korea institute of geoscience and mineral resources, geologic environment research) ;
  • Son, Bongho (GNS Engineering., co. Ltd.) ;
  • Park, Sungmin (GNS Engineering., co. Ltd.) ;
  • Jeon, Byonghun (Hanyang University, major in earth resources and environmental engineering)
  • 투고 : 2019.08.06
  • 심사 : 2019.08.29
  • 발행 : 2019.09.30

초록

최근에는 다양한 다상오염물 거동 흐름 모델들이 개발되었고 일부는 상용화되기도 하였으나, 대부분이 압력기저접근방식을 갖고 개발된 프로그램들이므로 다양한 수치적 어려움을 내재하고 있다. 이러한 수치적 어려움을 극복하기 위해서는 분율흐름접근방식을 따르는 기존 다상흐름거동 수치모델로 개발된 MultiPhaSe flow (MPS) 모델에 계면활성제에 의한 용해 현상을 모사할 수 있는 오염물 거동 모듈을 결합해서 MultiPhaSe flow and TranSport (MPSTS) 프로그램을 본 연구에서 개발하였다. 개발된 모델은 Clement의 해석 해를 사용하여 검증하였다. 여기서 MPSTS프로그램은 입자추적법과 결합한 라그랑지안-율러리안 기법을 이용해서 상간물질전달 효과와 다상내 오염물 거동 기능을 결합한 계면활성제 활용 복원과정을 모사할 수 있는 프로그램이다. 본 연구에서는 개발된 모델을 이용해서 소수성 액체(non aqueous phase liquid, NAPL)로 오염된 지역의 계면활성제에 의한 오염 정화 시 층상구조를 가지는 수리지질학적 불 균질성이 복원효율에 미치는 영향을 수치 모의 하였다. 수치모의 결과, 하부 층의 수리전도도가 상부 층의 수리전도도보다 10배, 20배, 50배로 큰 경우에 대해서 하부에서 물속에 용해된 디젤의 농도가 높게 나타난다. 왜냐하면 계면활성제가 하부 층을 따라서 좀 더 빨리 움직여서 하부 층에서 잔류 소수성 액체를 좀 더 많이 용해시켰기 때문이다.

Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

키워드

참고문헌

  1. Suk, H., and Yeh, G. T., "3D, Three-Phase Flow Simulations Using the Lagrangian-Eulerian Approach with Adaptively Zooming and Peak/Valley Capturing Scheme." J. Hydrol. Eng., 12(1), 14-32 (2007). https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(14)
  2. Suk, H., and Yeh, G. T., "Multiphase Flow Modeling with General Boundary Conditions and Automatic Phase-onfiguration Changes using a Fractional-Flow Approach." Comput. Geosci., 12(4), 541-571 (2008). https://doi.org/10.1007/s10596-008-9094-x
  3. Suk, H., Yeo, I., and Lee, K., "Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration." Econ. Environ. Geol., 44(2), 161-170 (2011). https://doi.org/10.9719/EEG.2011.44.2.161
  4. Bastian, P., and Helmig, R., "Efficient Fully-Coupled Solution Techniques for Two-Phase Flow in Porous Media Parallel Multigrid Solution and Large Scale Computations." Adv. Water. Resour., 23(3), 199-216 (1999). https://doi.org/10.1016/S0309-1708(99)00014-7
  5. Bradford, S. A., Abriola, L. M., and Rathfelder, K. M., "Flow and Entrapment of Dense Nonaqueous Phase Liquids in Physically and Chemically Heterogeneous Aquifer Formations." Adv. Water. Resour., 22(2), 117-132 (1998). https://doi.org/10.1016/S0309-1708(98)00005-0
  6. Celia, M.A., and Binning, P., "A Mass Conservative Numerical Solution for Two‐phase Flow in Porous Media with Application to Unsaturated Flow." Water Resour. Res., 28(10), 2819-2828 (1992). https://doi.org/10.1029/92WR01488
  7. Dekker, T. J., and Abriola, L. M., "The Influence of Field-Scale Heterogeneity on the Infiltration and Entrapment of Dense Nonaqueous Phase Liquid in Saturated Formulations." J. Contam. Hydrol., 42(2), 187-218 (2000). https://doi.org/10.1016/S0169-7722(99)00092-3
  8. Kaluarachchi, J. J., and Parker, J. C., "An Efficient Finite Element Method for Modeling Multiphase Flow." Water Resour. Res., 25(1), 43-54 (1989). https://doi.org/10.1029/WR025i001p00043
  9. Kueper, B. H., and Frind, E. O., "Two-Phase Flow in Heterogeneous Porous Media: 1. Model Development." Water Resour. Res., 27(6), 1049-1057 (1991). https://doi.org/10.1029/91WR00266
  10. Pinder, G. F., and Abriola, L. M., "On the Simulation of Nonaqueous Phase Organic Compounds in the Subsurface." Water Resour. Res., 22(9S), 109S-119S (1986). https://doi.org/10.1029/WR022i09Sp0109S
  11. Sleep, B. E., and Sykes, J. F., "Modeling the Transport of Volatile Organics in Variably Saturated Media." Water Resour. Res., 25(1), 81-92 (1989). https://doi.org/10.1029/WR025i001p00081
  12. White, M. D., and Oostrom, M., STOMP, subsurface transport over multiple phases, theory guide. PNL-XXXX, Pacific Northwest Laboratory, Richland, Wash. (1995).
  13. Class, H., Helmig, R., and Bastian, P., "Numerical Simulation of Non-Isothermal Multiphase Multicomponent Processes in Porous Media. 1: An Efficient Solution Technique." Adv. Water. Resour., 25(5), 533-550 (2002). https://doi.org/10.1016/S0309-1708(02)00014-3
  14. Guarnaccia, J. F., and Pinder, G. F., "NAPL: A Mathematical Model for the Study of NAPL Contamination in Granular Soils, Equation Development and Simulator Documentation" RCGRD #95-22, The Univ. of Vermont, Burlington, Vt. (1997).
  15. Wendland, E., and Flensberg, D., "A hybrid numerical scheme for multi-phase flow in heterogeneous media." Proc., XIV Int. Conf. on Computational Methods in Water Resources, Delft, The Netherlands, p. 297-304 (2002).
  16. Spivak, A., Price, H. S., and Settari, A., "Solution of the Equations for Multidimensional, Two Phase, Immiscible Flow by Variational Methods." Soc. Petrol. Eng. J., 17(1), 27-41 (1977). https://doi.org/10.2118/5723-PA
  17. Gallo, C., and Manzini, G., "A Fully Coupled Numerical Model for Two-Phase Flow with Contaminant Transport and Biodegradation Kinetics." Commun. Numer. Methods. Eng., 17(5), 325-336 (2001). https://doi.org/10.1002/cnm.409
  18. Binning, P., and Celia, M. A., "Practical Implementation of the Fractional Flow Approach to Multi-Phase Flow Simulation." Adv. Water. Resour., 22(5), 461-478 (1999). https://doi.org/10.1016/S0309-1708(98)00022-0
  19. Chen, Z., Qin, G., and Ewing, R. E., "Analysis of a Compositional Model for Fluid Flow in Porous Media." SIAM J. Appl. Math., 60(3), 747-777 (2000). https://doi.org/10.1137/S0036139998333427
  20. Hoteit, H., and Firoozabadi, A., "Numerical Modeling of Two-Phase Flow in Heterogeneous Permeable Media with Different Capillarity Pressures." Adv. Water. Resour., 31(1), 56-73 (2008). https://doi.org/10.1016/j.advwatres.2007.06.006
  21. Hoteit, H., and Firoozabadi, A., "An Efficient Numerical Model for Incompressible Two-Phase Flow in Fractured Media." Adv. Water. Resour., 31(6), 891-905 (2008). https://doi.org/10.1016/j.advwatres.2008.02.004
  22. Pope G. A., Sepehrnoori, K., Sharma, M. M., McKinney, D. C., Speitel, G. E., and Jackson, R. E., Three-Dimensional NAPL fate and transport model. EPA/600R-99/011 (February 1999).
  23. Jackson, R. E., Dwarakanath, V., Ewing, J. E., and Avis J., "Migration of Viscous Non-Aqueous Phase Liquids (NAPLs) in Alluvium, Fraser River lowlands, British Columbia." Can. Geotech. J., 43(7), 694-703 (2006). https://doi.org/10.1139/t06-034
  24. Lee, K. S., Kim, Y. H., Kim, C. U., Lee, J. M., and Koo, K. K., "Removal of Oil from Soil Using Nonionic Surfactant: The Effects of Middle Phase Formation and Dynamic Interfacial Tension" Clean Technol., 60(1), 51-60 (2000).
  25. Rathfelder, K. M., Abriola, L. M., Taylor, T. P., and Pennell, K. D., "Surfactant-Enhanced Recovery of Tetrachloroethylene from a Porous Medium Containing Low Permeability Lenses: 2. Numerical simulations." J. Contam. Hydrol, 48(3-4), 351-374 (2001). https://doi.org/10.1016/S0169-7722(00)00186-8
  26. Finkel, M., Liedl, R., and Teutsch, G., "Modelling Surfactant-Enhanced Remediation of Polycyclic Aromatic Hydrocarbons." Environ. Model. Softw., 14(2-3), 203-211 (1999). https://doi.org/10.1016/S1364-8152(98)00071-1
  27. Lee, M., "A Numerical Study of Surfactant Flushing to Remediate NAPL (Non-Aqueous Phase Liquid)." Water Air Soil Pollut., 121(1-4), 289-307 (2000). https://doi.org/10.1023/A:1005271026263
  28. Brown, C. L., Pope, G. A., Abriola, L. M., and Sepehrnoori, K., "Simulation of Surfactant‐Enhanced Aquifer Remediation." Water Resour. Res., 30(11), 2959-2977 (1994). https://doi.org/10.1029/94WR01458
  29. Mason, A. R., and Kueper, B. H., "Numerical Simulation of Surfactant-Enhanced Solubilization of Pooled DNAPL." Environ. Sci. Technol., 30(11), 3205-3215 (1996). https://doi.org/10.1021/es9507372
  30. Lee, K. S., "Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process." J. Korean Soc. Environ. Eng, 32(7), 690-698 (2010).
  31. Suk, H., "Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary." Ground Water, 54(4), 508-520 (2016). https://doi.org/10.1111/gwat.12398
  32. Parker, J. C., Lenhard, R. J., and Kuppusamy, T., "A Parametric Model for Constitutive Properties Governing Multiphase Flow in Porous media." Water Resour. Res., 23(4), 618-624 (1987). https://doi.org/10.1029/WR023i004p00618
  33. Pennell, K. D., Jin, M., Abriola, L. M., and Pope, G. A., "Surfactant-Enhanced Remediation of Soil Columns Contaminated by Residual Tetrachloroethylene." J. Contam. Hydrol., 16(1), 35-53 (1994). https://doi.org/10.1016/0169-7722(94)90071-X
  34. Clement, T. P., "Generalized Solution to Multispecies Transport Equations Coupled with a First-Order reaction network." Water Resour. Res., 37(1), 157-163 (2001). https://doi.org/10.1029/2000WR900239
  35. Zhong, L., Mayer, A. S., and Pope, G. A. "The Effects of Surfactant Formulation on Nonequilibrium NAPL Solubilization." J. Contam. Hydrol., 60(1-2), 55-75 (2003). https://doi.org/10.1016/S0169-7722(02)00063-3
  36. Domenico, P. A., and Schwartz, F. W., Physical and chemical hydrogeology, 2nd, John wiley & Sons, inc. 1990.