DOI QR코드

DOI QR Code

Effects of Disease Resistant Genetically Modified Rice on Soil Microbial Community Structure According to Growth Stage

  • Sohn, Soo-In (Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Oh, Young-Ju (Institue for Future Environmental Ecology Co., Ltd.) ;
  • Ahn, Jae-Hyung (Microbial Safety Team, Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Hyeon-jung (Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Cho, Woo-Suk (Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Cho, Yoonsung (Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Bum Kyu (Department of Environment Science & Biotechnology, College of Medical Science, Jeonju University)
  • Received : 2019.06.25
  • Accepted : 2019.08.14
  • Published : 2019.09.30

Abstract

BACKGROUND: This study investigated the effects of rice genetically modified to be resistant against rice blast and rice bacterial blight on the soil microbial community. A comparative analysis of the effects of rice genetically modified rice choline kinase (OsCK1) gene for disease resistance (GM rice) and the Nakdong parental cultivar (non-GM rice) on the soil microbial community at each stage was conducted using rhizosphere soil of the OsCK1 and Nakdong rice. METHODS AND RESULTS: The soil chemistry at each growth stage and the bacterial and fungal population densities were analyzed. Soil DNA was extracted from the samples, and the microbial community structures of the two soils were analyzed by pyrosequencing. No significant differences were observed in the soil chemistry and microbial population density between the two soils. The taxonomic analysis showed that Chloroflexi, Proteobacteria, Firmicutes, Actinobacteria, and Acidobacteria were present in all soils as the major phyla. Although the source tracking analysis per phylogenetic rank revealed that there were differences in the bacteria between the GM and non-GM soil as well as among the cultivation stages, the GM and non-GM soil were grouped according to the growth stages in the UPGMA dendrogram analysis. CONCLUSION: The difference in bacterial distributions between Nakdong and OsCK1 rice soils at each phylogenetic level detected in microbial community analysis by pyrosequencing may be due to the genetic modification done on GM rice or due to heterogeneity of the soil environment. In order to clarify this, it is necessary to analyze changes in root exudates along with the expression of transgene. A more detailed study involving additional multilateral soil analyses is required.

Keywords

References

  1. Ahrenholtz, I., Harms, K., de Vries, J., & Wackernagel, W. (2000). Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Applied Environmental Microbiology, 66, 1862-1865. https://doi.org/10.1128/AEM.66.5.1862-1865.2000
  2. Aulakh, M. S., Wassmann, R., Bueno, C., Kreuzwieser, J., & Rennenberg, H. (2001). Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 3, 139-148. https://doi.org/10.1055/s-2001-12905
  3. Azad, M. A. K., Amin, L., & Sidik, N. M. (2014). Gene technology for papaya ringspot virus disease management. The Scientific World Journal, Article ID 768038.
  4. Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013b). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198(1), 264-273. https://doi.org/10.1111/nph.12124
  5. Barriuso, J., Valverde, J. R., & Mellado, R. P. (2012). Effect of cry1Ab protein on rhizobacterial communities of Bt -maize over a four-year cultivation period. PLoS ONE, 7, e35481. https://doi.org/10.1371/journal.pone.0035481
  6. Basu, U., Basu, A., & Taylor, G. J. (1994). Differential exudation of polypeptides by roots of aluminumresistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminum stress. Plant Physiology, 106(1), 151-158. https://doi.org/10.1104/pp.106.1.151
  7. Basu, U., Good, A. G., Aung, T., Slaski, J. J., Basu, A., Briggs, K. G., & Taylor, G. J. (1999). A 23-kDa, root exudate polypeptide co-segregates with aluminum resistance in Triticum aestivum. Physiologia Plantarum, 106(1), 53-61. https://doi.org/10.1034/j.1399-3054.1999.106108.x
  8. Caraux, G., & Pinloche, S. (2005). PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280-1281. https://doi.org/10.1093/bioinformatics/bti141
  9. Charmont, S., Jamet, E., Pont-Lezica, R., & Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry, 66(4), 453-461. https://doi.org/10.1016/j.phytochem.2004.12.013
  10. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K., & Lim, Y. W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  11. Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  12. Gibellini, F., & Smith, T. K. (2010). The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phsphatidylcholine. IUBMB Life, 62, 414-428. https://doi.org/10.1002/iub.337
  13. Glandorf, D. C. M., Bakker, P. A. H. M., & van Loon, L. C. (1997). Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Botanica Neerlandica, 46, 85-104. https://doi.org/10.1111/plb.1997.46.1.85
  14. Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonas. Nature Reviews Microbiology, 3(4), 307-319. https://doi.org/10.1038/nrmicro1129
  15. Hamedy, M, Lozupone, C., & Knight, R. (2010). Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. The ISME, J 4, 17-27. https://doi.org/10.1038/ismej.2009.97
  16. Heuer, H., Kroppenstedt, R. M., Lottmann, J., Berg, G., & Smalla, K. (2002). Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Applied Environmental Microbiology, 68, 1325-1335. https://doi.org/10.1128/AEM.68.3.1325-1335.2002
  17. Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M. G. A., Schlaeppi, K., & Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9, 2738. https://doi.org/10.1038/s41467-018-05122-7
  18. Huang, X. F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92, 267-275. https://doi.org/10.1139/cjb-2013-0225
  19. Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., & O'Donnell, A. G. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek, 95, 319-334. https://doi.org/10.1007/s10482-009-9317-8
  20. Jung, B. G., Jo, G. H., Yun, E. S., Yoon, J. H., & Kim, Y. H. (1998). Monitoring on chemical properties of bench marked paddy soils in Korea. Korean Journal of Soil Science and Fertilizer, 31, 246-252.
  21. Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9, 115-123. https://doi.org/10.1002/smll.201201225
  22. Kim, K. N., Lee, J. S., Han, H. Choi, S. A., Go, S. J., & Yoon, I. S. (2003). Isolation and characterization of a novel rice $Ca^{2+}$-regulated protein kinase gene involved in response to diverse signals including cold, cytokinins, sugars, and salts. Plant Molecular Biology, 52, 1191-1202. https://doi.org/10.1023/B:PLAN.0000004330.62660.a2
  23. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  24. Lauber, C. L., Hamedy, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied Environmental Microbiology, 75, 5111-5120. https://doi.org/10.1128/AEM.00335-09
  25. Lee, J. H., Yi, H., Jeon, Y. S., Won, S., & Chun, J. (2012). TBC: a clustering algorithm based on prokaryotic taxonomy. Journal of Microbiol, 50, 181-185. https://doi.org/10.1007/s12275-012-1214-6
  26. Lee, J. S., Suh, S. C., Lee, Y. H., Kim, Y. H., & Heo, S. K. (2007). OsCK1 gene from Oryza sativa, expression vector comprising the gene, transformants transformed with the vector and production method of the transformants. Korean Patent No. 100682129.
  27. Lee, Y. H., Ahn, B. K., & Sonn, Y. K. (2011). Effects of electrical conductivity on the soil microbial community in a controlled horticultural land for strawberry cultivation. Korean Journal of Soil Science and Fertilizer, 44, 830-835. https://doi.org/10.7745/KJSSF.2011.44.5.830
  28. Li, W., Jaroszewski, L., & Godzik, A. (2001). Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17(3), 282-283. https://doi.org/10.1093/bioinformatics/17.3.282
  29. Lottmann, J., & Berg, G. (2001). Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiological Research, 156, 75-82. https://doi.org/10.1078/0944-5013-00086
  30. Lottmann, J., Heuer, H., Smalla, K., & Berg, G. (1999). Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiology Ecololy, 29, 365-377. https://doi.org/10.1111/j.1574-6941.1999.tb00627.x
  31. Medina, J. H., Gagnon, H., Piche, Y., Ocampo, J. A., Garrido, J. M. G., & Vierheilig, H. (2003). Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164, 993-998. https://doi.org/10.1016/S0168-9452(03)00083-9
  32. Menders, R., Kruuijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. I., Bakker, P. A., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for desease suppressive bacteria. Science, 332(6033), 1097-1100. https://doi.org/10.1126/science.1203980
  33. Neumann, G., Bott, S., Ohler, M. A., Mock, H. P., Lippmann, R., Grosch, R., & Smalla, K. (2014). Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Frontiers in Microbiology, 5, 1-6. https://doi.org/10.3389/fmicb.2014.00001
  34. Ng, E. L., Patti, A. F., Rose, M. T., Schefe C. R., Wilkinson, K., & Cavagnaro, T. R. (2014a). Functional stoichiometry of soil microbial communities after amendment with stabilized organic matter. Soil Biology and Biochemistry, 7, 170-178.
  35. Park, E. J., Chun, J., Cha, C. J., Park, W. S., Jeon, C. O., & Bae, J. W. (2012). Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiology, 30, 197-204. https://doi.org/10.1016/j.fm.2011.10.011
  36. Rasche, F., Hodl, V., Poll, C., Kandeler, E., Gerzabek, M. H., van Elsas, J. D., & Sessitsch, A. (2006). Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure FEMS Microbiology Ecololy, 56, 219-235. https://doi.org/10.1111/j.1574-6941.2005.00027.x
  37. Rooney, D. C., & Clipson, N. J. W. (2009). Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil. Microbial Ecology, 57, 4-13. https://doi.org/10.1007/s00248-008-9399-2
  38. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., van Horn, D. J., & Weber, C. F. (2009). Introducing mother: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/AEM.01541-09
  39. Sessitsch, A., Kan, F. Y., & Pfeifer, U. (2003). Diversity and community structure of culturable Bacillus spp. populations in the 13 rhizospheres of transgenic potatoes expressing the lytic peptide cecropin B. Applied Soil Ecology, 22, 149-158. https://doi.org/10.1016/S0929-1393(02)00132-4
  40. Turrini, A., Sbrana, C., & Giovannetti, M. (2015). Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in Microbiology, 166, 121-131. https://doi.org/10.1016/j.resmic.2015.02.006
  41. Unno, T., Jang, J., Han, D., Kim, J. H., Sadowsky, M. J., Kim, O. S., Chun, J., & Hur ,H. G. (2010). Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environmental Science & Technology, 44, 7777-7782. https://doi.org/10.1021/es101500z
  42. Vierheilig, H., Alt, M., Lange, J., Gut-Rella, M., Wiemken, A., & Boller, T. (1995). Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied Environmental Microbiology, 61, 3031-3034. https://doi.org/10.1128/AEM.61.8.3031-3034.1995
  43. Vierheilig, H., Alt, M., Neuhaus, J. M., Boller, T., & Wiemken, A. (1993). Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Molecular Plant-Microbe Interactions, 6, 261-264. https://doi.org/10.1094/MPMI-6-261
  44. Wei, X. D., Zou, H. L., Chu, L. M., Liao, B., Ye, C. M., & Lan, C.Y. (2006). Field released transgenic papaya effect on soal microbial communities and enzyme activities. Journal of Environmental Sciences, 18, 734-740. https://doi.org/10.3321/j.issn:1001-0742.2006.04.019
  45. Weller, D. M., Raaijmakers, J. M., Gardener, B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
  46. Yang, Y. F., Yuan, H. X., Liu, Y. L., Xu, X. P., & Li, B.J. (2002). Research on root microorganism community of "RCH" transgenic rice. Agricultural Sciences in China, 10, 29-31.