DOI QR코드

DOI QR Code

GENERALIZED DOMINOES TILING'S MARKOV CHAIN MIXES FAST

  • KAYIBI, K.K. (School of Mathematics, University of Bristol) ;
  • SAMEE, U. (Department of Mathematics, Islamia College of Sciences and Commerce) ;
  • MERAJUDDIN, MERAJUDDIN (Department of Applied Mathematics, AMU) ;
  • PIRZADA, S. (Department of Mathematics, University of Kashmir)
  • Received : 2019.01.11
  • Accepted : 2019.08.05
  • Published : 2019.09.30

Abstract

A generalized tiling is defined as a generalization of the properties of tiling a region of ${\mathbb{Z}}^2$ with dominoes, and comprises tiling with rhombus and any other tilings that admits height functions which can be ordered into a distributive lattice. By using properties of the distributive lattice, we prove that the Markov chain consisting of moving from one height function to the next by a flip is fast mixing and the mixing time ${\tau}({\epsilon})$ is given by ${\tau}({\epsilon}){\leq}(kmn)^3(mn\;{\ln}\;k+{\ln}\;{\epsilon}^{-1})$, where mn is the area of the grid ${\Gamma}$ that is a k-regular polycell. This result generalizes the result of the authors (T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018)) and improves on the mixing time obtained by using coupling arguments by N. Destainville and by M. Luby, D. Randall, A. Sinclair.

Keywords

References

  1. O. Bodini and M. Latapy, Generalized tilings with height function, Morfismos 7 (2003) 47-68.
  2. H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001) 297-346. https://doi.org/10.1090/S0894-0347-00-00355-6
  3. N. Destainville, Mixing times of plane random rhombus tilings, Disc. Math. Theo. Comp. Sci. Proc. AA (DM-CCG), (2001) 1-22.
  4. Solomon W. Golomb, Polyominoes, Princeton University Press, (1994).
  5. M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989) 1149-1178. https://doi.org/10.1137/0218077
  6. P.W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961) 1209-1225. https://doi.org/10.1016/0031-8914(61)90063-5
  7. P.W. Kasteleyn, Graph Theory and crystal physics, in Graph Theory and Theoretical Physics, Academic Press, New York, (1967) 43-110.
  8. K.K. Kayibi and S. Pirzada, T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018) 714 (2018) 1-14. https://doi.org/10.1016/j.tcs.2017.12.020
  9. K.K. Kayibi and S. Pirzada, Planarity, symmetry and counting tilings, Graphs and Comb. 28 (2012) 483-497. https://doi.org/10.1007/s00373-011-1062-x
  10. K.K Kayibi, S. Pirzada and T.A. Chishti, Sampling contengency tables, AKCE Int. J. Graphs Comb. 15, 3 (2018) 298-306. https://doi.org/10.1016/j.akcej.2017.10.001
  11. R. Kenyon, The planar dimer model with a boundary: A survey, (1998) Preprint.
  12. R. Kenyon, A. Okounkov and S. Sheffield, Dimers and Amoebae, Ann. Math. 163 (2006) 1019-1056. https://doi.org/10.4007/annals.2006.163.1019
  13. M. Korn and I. Pak, Tiling of rectangles with T-tetrominoes, Theor. Comp. Sci. 319 (2007) 3-27. https://doi.org/10.1016/j.tcs.2004.02.023
  14. M. Luby, D. Randall and A. Sinclair, Markov chain algorithms for planar lattice structures, SIAM J. Comput. 31 (2001) 167-192. https://doi.org/10.1137/S0097539799360355
  15. C. Merino, On the number of tilings of the rectangular board with T-tetrominoes, Aust. J. Comb. 14 (2008) 107-114.
  16. I. Pak and J. Yang, Tiling simply connected regions with rectangles, J. Comb. Theory, Series A 120 (2013) 1804-1816. https://doi.org/10.1016/j.jcta.2013.06.008
  17. A. Sinclair, Convergence rates for Monte Carlo Experiments, S.G. Whittington (eds.), Numerical Methods for Polymeric Systems, Springer-Verlag, New York, (1998) 1-17.
  18. H.N.V. Temperley and M.E. Fisher, Dimer problem in statistical mechanics-an exact result, Phi. Mag. 6 (1961) 1061-1063. https://doi.org/10.1080/14786436108243366
  19. R. Thomas, A survey of Pfaffian orientations of graphs, Proc. Int. Congress of Mathematicians, Madrid (2006) 963-984.
  20. D.W. Walkup, Covering a rectangle with T-tetrominoes, Amer. Math. Monthly 72 (1965) 986-988. https://doi.org/10.2307/2313337