References
- O. Bodini and M. Latapy, Generalized tilings with height function, Morfismos 7 (2003) 47-68.
- H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001) 297-346. https://doi.org/10.1090/S0894-0347-00-00355-6
- N. Destainville, Mixing times of plane random rhombus tilings, Disc. Math. Theo. Comp. Sci. Proc. AA (DM-CCG), (2001) 1-22.
- Solomon W. Golomb, Polyominoes, Princeton University Press, (1994).
- M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989) 1149-1178. https://doi.org/10.1137/0218077
- P.W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961) 1209-1225. https://doi.org/10.1016/0031-8914(61)90063-5
- P.W. Kasteleyn, Graph Theory and crystal physics, in Graph Theory and Theoretical Physics, Academic Press, New York, (1967) 43-110.
- K.K. Kayibi and S. Pirzada, T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018) 714 (2018) 1-14. https://doi.org/10.1016/j.tcs.2017.12.020
- K.K. Kayibi and S. Pirzada, Planarity, symmetry and counting tilings, Graphs and Comb. 28 (2012) 483-497. https://doi.org/10.1007/s00373-011-1062-x
- K.K Kayibi, S. Pirzada and T.A. Chishti, Sampling contengency tables, AKCE Int. J. Graphs Comb. 15, 3 (2018) 298-306. https://doi.org/10.1016/j.akcej.2017.10.001
- R. Kenyon, The planar dimer model with a boundary: A survey, (1998) Preprint.
- R. Kenyon, A. Okounkov and S. Sheffield, Dimers and Amoebae, Ann. Math. 163 (2006) 1019-1056. https://doi.org/10.4007/annals.2006.163.1019
- M. Korn and I. Pak, Tiling of rectangles with T-tetrominoes, Theor. Comp. Sci. 319 (2007) 3-27. https://doi.org/10.1016/j.tcs.2004.02.023
- M. Luby, D. Randall and A. Sinclair, Markov chain algorithms for planar lattice structures, SIAM J. Comput. 31 (2001) 167-192. https://doi.org/10.1137/S0097539799360355
- C. Merino, On the number of tilings of the rectangular board with T-tetrominoes, Aust. J. Comb. 14 (2008) 107-114.
- I. Pak and J. Yang, Tiling simply connected regions with rectangles, J. Comb. Theory, Series A 120 (2013) 1804-1816. https://doi.org/10.1016/j.jcta.2013.06.008
- A. Sinclair, Convergence rates for Monte Carlo Experiments, S.G. Whittington (eds.), Numerical Methods for Polymeric Systems, Springer-Verlag, New York, (1998) 1-17.
- H.N.V. Temperley and M.E. Fisher, Dimer problem in statistical mechanics-an exact result, Phi. Mag. 6 (1961) 1061-1063. https://doi.org/10.1080/14786436108243366
- R. Thomas, A survey of Pfaffian orientations of graphs, Proc. Int. Congress of Mathematicians, Madrid (2006) 963-984.
- D.W. Walkup, Covering a rectangle with T-tetrominoes, Amer. Math. Monthly 72 (1965) 986-988. https://doi.org/10.2307/2313337