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GENERALIZED DOMINOES TILING’S MARKOV CHAIN

MIXES FAST

K.K. KAYIBI, U. SAMEE, MERAJUDDIN AND S. PIRZADA∗

Abstract. A generalized tiling is defined as a generalization of the prop-

erties of tiling a region of Z2 with dominoes, and comprises tiling with

rhombus and any other tilings that admits height functions which can be
ordered into a distributive lattice. By using properties of the distributive

lattice, we prove that the Markov chain consisting of moving from one

height function to the next by a flip is fast mixing and the mixing time

τ(ε) is given by τ(ε) ≤ (kmn)
3
(mn ln k + ln ε

−1
), where mn is the area of

the grid Γ that is a k-regular polycell. This result generalizes the result of

the authors (T-tetromino tiling Markov chain is fast mixing, Theor. Comp.

Sci. (2018)) and improves on the mixing time obtained by using coupling
arguments by N. Destainville and by M. Luby, D. Randall, A. Sinclair.

AMS Mathematics Subject Classification : 05C99, 11K99.

Key words and phrases : Dominoes, distributive lattice, tiling, partition

functions, height function, mixing time of Markov chain, FPRAS.

1. Introduction

Throughout this paper, a lattice P is a set L and a partial order � such that,
for all x, y, z ∈ L, the following hold.
1. x � x.
2. x � y and y � x entails x = y.
3. x � y and y � z entails x � z.
4. For every pair (x, y), there exit x∧y and x∨y, where x∧y is the largest element
of P that is smaller than both x and y, and x∨y is the smallest element of P that
is bigger than both x and y. A lattice is distributive if x∨(y∧z) = (x∨y)∧(x∨z)
and x∧ (y ∨ z) = (x∧ y)∨ (x∧ z). A grid in Z

r

is a set of points of Zr

that are
equally spaced. We note that many authors in the tiling literature use the term
lattice for what we call grid.
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A tile is a connected subset of R2. Let θ be a tile and Γ be a subset of
R2. A tiling of Γ with θ is a covering of Γ by copies of θ such that there is
no overlap between two tiles. An example of tiling is given in Figure 1 (b).
Apart from their recreational values [4], tilings have received much attention
because of their connection with the partition function in Statistical Mechanics
[2, 6, 7, 12, 11, 18]. A typical example is the modeling of crystal structures
using tilings on various grids. A dimer is a diatomic molecule. A matching of
graph G is a set of edges of G such that no vertex is adjacent to two vertices
or more. A complete matching is a matching that covers all the vertices. The
adsorption of dimers on the surface of a crystal can be modelled as a matching
on a two dimensional rectangular grid where atoms are sited on vertices and the
links between the atoms are the edges. This model is illustrated in Figure 1 (a)
and (b).
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Figure 1. (a) Dimers adsorbed on the surface of a crystal.
Each dimer is represented by two vertices joined by an edge
in the grid. Notice that this configuration of dimers is just a
complete matching on the grid. (b) The tiling with dominoes
corresponding to the configuration of dimers in (a).

Now, putting a dimer i in some position on the grid Γ requires some energy,
ε
i
, which may be positive or negative. Hence, if C denotes a configuration of

dimers, then C has an energy E(C) associated with it and this energy is given
by E(C) =

∑
i
εi , where the sum is over all dimers i ∈ C. An obvious physical

requirement is that the most probable configurations should be the ones with
the lowest energies. This requirement is only satisfied if the probability to get a
configuration of energy level E(C) is of the form

Pr(C) =
e−βE(C)

Z
, (1)

where Z =
∑

C
e−βE(C), the partition function, is the normalization factor to

get a probability distribution, and β = 1
κT , where T is the absolute temperature

and κ is the constant of Boltzmann. The partition function is used to calculate
various thermodynamic properties of the system. For example, for a system
containing N particles, the internal energy U , is given by
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U = −N δ lnZ

δβ
= NκT 2 δ lnZ

δT
.

The entropy of the system, denoted by S, is given by

S =
U

T
+Nκ lnZ.

From these two quantities, it is easy to find the Helmholtz free energy, F =
U − TS.

From Equation (1), it is obvious that lower the temperature, the higher the
probability to find configurations of lowest energy. If T = 0, the system would
consist only of configurations called ground states. At higher temperatures, all
the states are equiprobable, and thus, when T → ∞, calculating Z ends up
being equivalent to counting the number of different configurations of dimers.
That is, counting the number of matchings on the lattice graph. This, in turn, is
equivalent to counting the number of tilings of an appropriate lattice by dominoes
and hence the connection between tilings and Statistical Mechanics.

In a typical Statistical Mechanics problem, N , the number of particles in the
system is of the magnitude of 1023, the Avogadro number. Thus, obtaining
Z may involve an intractable number of computations. Although some exact
counting has been found for some cases [6, 7, 18], most practical works rely
on sampling to calculate the statistics under study. Sampling techniques, such
as the Metropolis Sampling, construct a Markov chain and aim at sampling
configurations according to some probability distribution (preferably the uniform
distribution.) Since successive states of a Markov chain are not independent, an
unbiased sample can only be obtained if the chain reaches stationarity, the stage
when the probability of sampling a particular configuration is fixed in time.
Informally, the mixing time of a Markov chain is the number of steps necessary
to reach the stationary state. And, knowing the mixing time of a particular
Markov chain is crucial to avoid either to get a biased sample (if stationarity is
not reached), or to avoid the computational cost of running the chain more than
necessary.

1.1. Canonical path and mixing time of Markov Chains. Let M be a
Markov chain on a set of states Ω. Let P be the matrix of transitions from one
state to another. One may visualize the Markov chainM as a weighted directed
graph G where the states are vertices of G and there is an edge of weight P (x, y)
if the transition from state x to state y has probability P (x, y). A Markov chain
is irreducible if, for all pairs of states x and y, there is an integer n, depending
on the pair (x, y), such that Pn(x, y) > 0. In terms of the graph G, the Markov
chain is irreducible if there is a path between every pair of vertices of G. A
Markov chain is aperiodic if for all states x, there is an integer n such that for
all n′ ≥ n, Pn

′
(x, x) > 0. That is, after sufficient number of iterations, the chain

has a positive probability to stay on x. This ensures that the return to state x is
not periodic. In terms of the graph G, this can be achieved by having a loop at
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every vertex. A Markov chain is ergodic if it is irreducible and aperiodic. It can
be shown that if P is the matrix of transitions of an ergodic Markov chain, then
there is an integer n such that for all the pairs of states (x, y), Pn(x, y) > 0.
(Notice that n does not depends on the pair). It can also be proved that for
every ergodic Markov Chain with transition matrix P , the largest eigenvalue of
P is equal to 1 (Perron-Frobenius Theorem). Using this, it can be proved that
there is a unique probability vector π, such that πP = π. The vector π is the
stationary distribution of M.

Let M be an ergodic Markov chain defined on a finite set of states Ω, with
a transition matrix P and stationary distribution π. Starting the chain from
an initial state x, we would like to measure ∆x(t), the distance between the

distribution at time t and the stationary distribution. More formally, if P
t

(y|x)
represents the probability that, at time t, the chain is at state y given initial state
x, and π(y) represents the probability that the chain is at state y at stationarity,
then the variation distance, denoted by ∆

x
(t), is defined as

∆
x
(t) =

1

2

∑
y∈Ω

|P
t

(y|x)− π(y)|.

A converging chain is one such that ∆
x
(t)→ 0 as t→∞ for all initial states

x. The rate of convergence is measured by τ
x
(ε), the time required to reduce

the variation distance to ε given an initial state x.

τ
x
(ε) = min{t : ∆

x
(t) ≤ ε, for all t′ ≥ t}.

The mixing time of the chain, denoted by τ(ε), is defined as maxx∈Ω, the
maximum being over all the initial points x. A Markov chain is said to be
rapidly mixing if its mixing time is bounded above by a polynomial in the size
of the input and 1

ε .
Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the transition matrix P . The

spectral gap of the matrix P is defined as max{1− λ2, 1− |λn|}. If P (x, x) < 1
2

for all x, then λn > 0, and therefore smaller than λ2. The spectral gap of P is
then the real number λ

1
− λ

2
, that is, 1− λ

2
. It can be shown that largest the

gap, the faster is the mixing time of the chain. The analysis of the mixing time
of a Markov chain is based on the intuition that a random walk on the graph G
mixes fast ( i.e., reaches all the states quickly) if G has no bottleneck. That is,
there are no cuts between any set of vertices S to its complement, which blocks
the flow of the Markov chain and thus prevents the Markov chain from reach-
ing easily some states. See [5, 17] for a better exposition on the topic. To make
this more formal, we need some preliminary definitions which conforms with [17].

The analysis of the mixing time of a Markov chain is based on the intuition
that a random walk on the graph G mixes fast ( i.e., reaches all the states quickly)
if G has no bottleneck. That is, there are no cuts, between any set of vertices S
to its complement, that blocks the flow of the Markov chain and thus prevents
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the Markov Chain from reaching easily some states.

Denoting the probability of x at stationarity by π(x) and the probability of
moving from x to y by P (x, y), the capacity of the arc e = (x, y), denoted c(e),
is given by

c(e) = π(x)P (x, y).

Let Px,y denote the set of all simple paths p from x to y (paths that contain
every vertex at most once). A flow in G is a function φ, from the set of simple
paths to the reals, such that ∑

p∈Px,y

φ(p) = π(x)π(y),

for all vertices x, y of G with x 6= y. A flow along an arc e is then defined as

φ(e) =
∑
p3e

φ(p).

For a flow φ, a measure of existence of an overload along an arc is given by
the quantity ρ(e), where

ρ(e) =
φ(e)

c(e)
,

and the cost of the flow φ, denoted by ρ(φ), is given by

ρ(φ) = max
e

ρ(e).

If a network G representing a Markov chain can support a flow of low cost,
then it can not have any bottlenecks, and hence its mixing time should be small.
This intuition is confirmed by the following Theorem [14].

Theorem 1.1. [14] Let M be an ergodic reversible Markov chain with holding
probabilities P (x, x) ≥ 1

2 at all states x. The mixing time of M satisfies

τ
x
(ε) ≤ ρ(φ)|p|

(
ln

1

π(x)
+ ln

1

ε

)
,

where |p| is the length of a longest path carrying non-zero flow in φ.

Literature abounds with analysis of mixing times of different tilings [3, 8, 9,
14, 17]. Luby et al. [14] use a coupling argument to prove that the mixing
time of tilings in planar grids is given by τ(ε) ≤ 12n4(1 + ln ε−1), where n is
the area of the grid. This applies to dominoes, rhombus and tiling that can
be represented as Eulerian orientations on a graph. This bound is confirmed
in [3], for the mixing time of plane rhombus tilings, through another heuristic
coupling argument. By taking an approach based on the structure of the lattice
of the height functions, the present paper recovers the seminal result [14] while
improving on the bound on the mixing times. Our approach uses the canonical
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Figure 2. (a) 4-regular polycell and weight on its edges. To
avoid overcrowding, we have only the tension on edges repre-
senting tiles and some edges of tension 1. (b) The difference of
potential on vertices. (c) The height function of the tiling.

path analysis, as in [8, 10], and is based on the notion of generalized tilings
introduced in [1].

2. Generalized tiling

Bodini and Latapy [1] defined a generalised tiling as follows. Let G be a
simple directed graph. A cell is an elementary oriented circuit of G and a
polycell, denoted by Γ, is a set of cells. The vertices of Γ are vertices of its cells.
A polycell is k-regular if every one of its cells is a circuit of length k. A boundary
of Γ is an arbitrary partial subgraph of P . Given an edge e ∈ Γ that is not on
the boundary, a tile is the set of all cells that have e in common. A tiling of Γ
is a set of tiles that constitutes a partition of the cells of Γ. See Figure 2 and 3
for an illustration, where the polycells are 4-regular and 3-regular, respectively.
The 4-regular polycell is tiled with dominos while the 3-regular is tiled with
rhombuses.

Now, let T be a tiling of a k-regular polycell Γ. A flow, φT , is associated to T
in the following way: φT (e) = 1− k if e is a tile of T , and φT (e) = 1, otherwise.

The height function of T , denoted by h, is a function from the set of vertices
of Γ to the integers, defined recursively as follows. In Γ, choose a vertex, v,
(preferably the one with the least cartesian coordinates.) Let h(v) = 0. Then,
starting from v, if e = (v

i
, v

j
), let h(v

j
) = h(v

i
) + φT (e) if e is directed towards

vj and h(vj ) = h(vi)− φT (e) if e is directed away from vj . Using the definition
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Figure 3. (a) illustrates a triangular grid tiled with rhom-
buses, (b) represents the orientation associated with the tiling.
The edges represented by broken lines are the ones representing
the tiles as illustrated at (c). The height function of the tiling
is given at (d). Below (b), (c) and (d) are their equivalents for
the new tiling obtained from the tiling (a) by flipping the top
left tile.

of the orientations of edges of γ, it is easy to check that for a given tiling T ,
h is well defined, in the sense that it does not depend on the trajectory taken.
Moreover, it is easy to check that there is a bijection between tilings of Γ and
the set of height functions.

A flip on a vertex v consists of changing the positions of all the tiles that have
v in common. In terms of the oriented edges, a flip consists of permuting the
roles of edges incident to v: it changes the edges representing tiles into normal
edges and normal edges to edges representing tiles in such a way as to respect
the orientations of the cells. A point v is flippable if a flip can be performed on
it. From the definition of height function on a k-regular polycell, it is easy to
notice that a point v is flippable if and only if its height is exactly one unit away
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(lower or higher) from that of half of its adjacent neighbors, and is k − 1 units
away (lower or higher) from the other half. From this fact, it is easy to notice
that if Γ is a k-regular polycell, and a flip at v changes the height function h
into h′, then h′(v) = h(v) ± k, where + applies if the height of v is lower than
its neighbors and − applies otherwise. Let the distance between two vertices v
and w in the height function h be defined as |h(v) − h(w)|. Notice that a flip
preserves the set of distances between v and its adjacent neighbors (while there
is a permutation of distances within the set of neighbors of v). Now, we give
properties of the lattice of height functions that are required to prove the main
theorem of this paper. Let h and h′ be two tilings of Γ. An ordering ≺ is defined
on the set of height functions by h ≺ h′ if h(w) ≤ h′(w) for all vertices w of Γ.
Let |h− h′|, the distance between h and h′ be defined as the number of vertices
v such that h(v) 6= h′(v).

Lemma 2.1. In a generalized tiling, every flip is an involution, that is, per-
forming a flip twice in succession at the same point brings the point back to its
original height.

Proof. Let Γ be a k-regular polycell and let the operator g be a flip at a point
v having height h(v). It is obvious that g(h), the height function obtained after
the flip is also a height function. Now, if v is flippable, then |h(v)−h(w)| = k−1
or |h(v)−h(w)| = 1 if w is a neighbor of v. We know that the operation flipping
consists only of permuting the distances between v and its neighbors and raises
or lowers the height of v by k. That is, g(h(v)) = h(v)± k. Since g(h) is also a
height function, the set of distances between v and its neighbors is preserved in
g(h). And, by induction, the operation gg(h) = g2(h) also preserves the distance
between v and its neighbors, since g2(h) is also a height function. But the only
way to permute the distance between v and its neighbors while preserving the
set of these distances is that g2(h) = h. For, if g2(h) 6= h, then, for some
vertex w adjacent to v, |g2(h(v))− g2(h(w))| ≥ 2k . Hence g2(h) is not a height
function. This is a contradiction. Therefore g2(h) = I, where I is the identity
operator. �

Two points v and w of Γ are independent if flipping at v does not effect as
whether w is flippable or not. That is, flipping at v does not change the height of
the point w and the heights of its nearest neighbors. A height function h covers
a height function h′ if h � h′ in the ordering ≺. In an obvious way, flipping on
a set means flipping on all the points of the set.

Lemma 2.2. Let h and h′ be two height functions (tilings), and let D =
{v

1
, . . . , v

t
} be the set of points where h differs from h′. That is, h(v

i
) 6= h′(v

i
)

for all i ∈ {1, . . . , t}.
(1) For i ∈ D, if |h(v

i
) − h′(v

i
)| ≥ 2k, then all the neighbors of v

i
belong to

D.
(2) For any v, |h(v)− h′(v)| ≤ mk.
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Proof. (1) Let w be a neighbor of v
i
. From the definition of the height function,

we have |h(v
i
)−h(w)| ∈ {1, (k−1)}. If |h(v

i
)−h′(v

i
)| ≥ 2k and |h(w)−h′(w)| =

0, then |h′(v
i
)− h′(w)| 6∈ {1, (k − 1)}. Hence h′ is not a height function, which

is a contradiction.
(2) If v is on the boundary, then h(v) = h′(v). That is, |h(v)− h′(v)| ∈ {0}.

If w is a neighbor of a boundary point but w is not on the boundary, then
|h(w) − h(v)| ∈ {1, (k − 1)} and |h′(w) − h′(v)| ∈ {1, (k − 1)}, since h and h′

are both height functions. Hence |h(w) − h′(w)| ∈ {0, 2, k, (k − 2), 2(k − 1)}.
Using the same argument, if u is a neighbor of w but not a neighbor of any
boundary point, then |h(u) − h′(u)| can be a sum or (subtraction) of any pair
of elements of {0, 2, k, (k − 2), 2(k − 1)}. Starting from a boundary point v, the
chain (v, w, u, . . . ) must terminate at another boundary point v′. But starting
from v′, such a chain must also meet the chain starting from v. And the longest
such chain would be if one started from leftmost point and moved diagonally
towards the mid point of the grid Γ. Such a chain would consist of m+n

2 vertices.

Hence, if r is a mid point of the grid, |h(r)− h′(r)| ∈ {0, · · · , km+n
2 }. If m ≥ n,

we have km+n
2 ≤ mk. �

The following lemma (Theorem 3.8 in [1]) is required in the proof of our main
result.

Lemma 2.3. [1] Let G be the graph whose vertices are height functions of a
polycell P and vertex x is adjacent to vertex y if there is a flip changing x to y.
The graph G associated with the ordering ≺ is a distributive lattice.

The following lemma is a re-edition of a result that is implicit in [1]. We
mention it for the sake of completeness and since it is used in the proof of the
main result.

Lemma 2.4. There is a path between any two height functions x and y of a
generalized tiling.

Proof. Take the path from x to y passing through x ∧ y. �

Lemma 2.5. If (x � a1 � a2 � .... � x ∧ y ≺ b1 ≺ b2 ≺ ... ≺ y), and
(x � c1 � c2 � .... � x∧ y ≺ d1 ≺ d2 ≺ ... ≺ y) are two different paths from x to
y passing through x ∧ y, then they have the same length. Moreover, this length
is at most km2n, where mn is the area of the grid Γ.

Proof. We know that the path x, ..., x∧ y, ...., y consists of flipping the point v,
where the height of x differs from y. Hence any two such different paths consist
of the same points, in different order. Hence they have the same length. To
put a bound on the length of the path, it is enough to know that there are at
most mn different points in the path. Moreover, by Lemma 2.2, every point can
undergo at most km flips. Hence the result. �
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Our main result consists of showing that Markov chains of generalized tilings
is fast mixing. We use the canonical path argument for this purpose.

The Markov Chain on the distributive lattices of generalized tilings
Let G be the digraph whose vertices are all the height functions of Γ, and

there is an arc e = (x, y) in G if there is a flip changing x to y. The Flip Random
Walk on G is defined as follows. Let x be a vertex of G of degree d

x
and let

the vertex y be adjacent to x. Starting at x, move to y with probability 1
mn ,

where mn is the dimension of the grid, or remain at x, otherwise. (For m,n ≥ 2,
one may notice that the chain stays at x with probability greater that 1/2). By
Lemma 2.4, the chain is irreducible and the matrix of transitions is symmetric
and aperiodic. Hence this random walk is an ergodic and reversible Markov
chain, which converges to a uniform distribution. In the sequel of this paper,
we show that it is also fast mixing. But, first we need to show that no arc of G
would be congested. Indeed, we have the following result.

Lemma 2.6. If e = (z, y) is an arc of G, then the number of different canoni-
cal paths passing through e is at most N , where N is the number of vertices of G.

Proof. Among all the edges in G, the ones through which the largest number
of canonical paths pass are the edges incident to the vertex 0̂. Indeed, all the
canonical path (x, ..., 0̂) have to pass through one of these edges incident to 0̂,

because 0̂ = x ∧ 0̂. But there are at most N − 1 such points x. �

The following is the main theorem.

Theorem 2.7. The Flip Random Walk on the set of height functions of a Gen-
eralized Tiling is a Markov chain that is rapidly mixing and the mixing time τ(ε)
is given by

τ(ε) ≤ (kmn)
3

(mn ln k + ln ε
−1

).

Proof. Let x and y be two tilings of Γ. We define the canonical path from x to y
as the path going from x to y and passing through x∧y. Such a path necessarily
exists, by Lemma 2.3. If there are many such paths, the canonical one is chosen
arbitrarily amongst them. The proof uses Theorem 1.1 and consists of showing
that there is a flow φ such that ρ(φ) is polynomial in the size of the grid Γ.
Indeed, if x and y are two vertices of G, let the canonical path be as defined
above. If there are many such paths, the canonical path is chosen arbitrary
amongst them. By Lemma 2.5, they have the same length, so the length of the
canonical path is well defined. So let p̂

xy
denote a canonical path from x to y

and let φ be a flow consisting of injecting π(x)π(y) units of flow along p̂
xy

. Then,
for all arcs e, we have

φ(e) =
∑

π(x)π(y),
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where the sum is over all the pairs {x, y} such that e ∈ p̂
xy

. Now, since by Lemma

2.6, there are at most N canonical paths through e, and π(x) = π(y) = 1
N , since

the distribution π is uniform, we have

φ(e) ≤ Nπ(x)π(y) ≤ 1

N
.

Moreover,

c(e) = π(x)P
x,y
≥ 1

Nmn
.

Hence

ρ(φ) ≤ max
e
φ(e)

minec(e)
≤ mn. (2)

Now, by Lemma 2.5, Theorem 1.1 and Equation (2), we get

τ
x
(ε) ≤ (mn)(kmn)2(ln

1

π(x)
+ ln

1

ε
).

Moreover, it is routine to check that for any k regular tilings, N ≤ kmn.
Indeed, for an mn grid, every k- regular cell can be oriented in at most k different
ways. Thus N , the number of different height functions can not exceed k

mn

.
Thus, we have

τ
x
(ε) ≤ (mn)3(ln k

mn

+ ln
1

ε
) ≤ (kmn)

3

(mn ln k + ln ε−1).

�
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