DOI QR코드

DOI QR Code

지능형 교통 환경에서 미국정부의 보안인증관리 & Pilot 정책

Security Credential Management & Pilot Policy of U.S. Government in Intelligent Transport Environment

  • Hong, Jin-Keun (Division of Information Communication Technology, Baekseok University)
  • 투고 : 2019.08.07
  • 심사 : 2019.09.20
  • 발행 : 2019.09.27

초록

본 논문은 미국 정부가 추진하고 있는 커넥티드 차량에서 SCMS와 파일롯 정책에 대해 분석하였다. SCMS는 인증, 무결성, 프라이버시, 그리고 상호운용성을 보장한다. 미국의 SCMS 지원위원회는 국가단위의 SCMS를 설립하고 시스템 전반에 대한 통제 역할을 수행하고 있다. 물론 보안 정책 수립 그리고 절차와 훈련 프로그램을 도입한다. 본 논문에서는 C-ITS에 적용하는 SCMS의 필요성에 대해 논의하였다. 그리고 SCMS의 구조에 대해 분석하였고 미국 정부의 커넥티드 차량의 파일롯 정책에 대해 고찰하였다. SCMS의 필요성에 대한 논의에서 차량과 차량 사이에 SCMS의 역할과 책임성이 중요하다는 사실을 강조하였다. 보안 인증 관리시스템에서는 구조를 살펴보았는데 차량이나 RSU에 사용되는 인증서의 유형에 대해 분석하였다. 인증서에 따른 기능과 특성을 분석하였다. 또한 SCMS가 가지는 비정상 행위에 대한 탐지와 경고 기능에 대한 고찰과 함께 기본 안전성 메시지의 기능에 대해서 분석하였다. 마지막으로 현재 미국 정부가 추진하고 있는 커넥티드 차량의 파일롯 프로젝트의 현황을 분석하였다. 테스트에 사용되는 환경과 함께 관련 메시지에 대해서도 분석하였다. 파일롯 프로젝트를 추진함에 있어서 발생하는 논의점에 대해서도 살펴보았다.

This paper analyzed the SCMS and pilot policy, which is pursued by the U.S. government in connected vehicles. SCMS ensures authentication, integrity, privacy and interoperability. The SCMS Support Committee of U.S. government has established the National Unit SCMS and is responsible for system-wide control. Of course, it introduces security policy, procedures and training programs making. In this paper, the need for SCMS to be applied to C-ITS was discussed. The structure of the SCMS was analyzed and the U.S. government's filot policy for connected vehicles was discussed. The discussion of the need for SCMS highlighted the importance of the role and responsibilities of SCMS between vehicles and vehicles. The security certificate management system looked at the structure and analyzed the type of certificate used in the vehicle or road side unit (RSU). The functions and characteristics of the certificates were reviewed. In addition, the functions of basic safety messages were analyzed with consideration of the detection and warning functions of abnormal behavior in SCMS. Finally, the status of the pilot project for connected vehicles currently being pursued by the U.S. government was analyzed. In addition to the environment used for the test, the relevant messages were also discussed. We also looked at some of the issues that arise in the course of the pilot project.

키워드

참고문헌

  1. H. Yasa (2018). Experiment Exposed Credentials in GitHub Public Repositories for CI/CD. IEEE SecDev2018. (pp.123). DOI : 10.1109/SecDev.2018.00039
  2. R. Li, J. Zhang & A. Dang. (2018). Cooperative system in free space optical communication for simultaneous multiuser transmission. IEEE Communication Letters, 22(10), 2036-2039. DOI : 10.1109/LCOMM.2018.2865734.
  3. P. Karkhanis, G. Mark, J. Van den Brand & S. Rajkamikar. (2018). Defining the C-ITS reference anrchitecture. IEEE International conference on software architecture companion(ICSA-C)2018. DOI : 10.1109/ICSA-C.2018.00044.
  4. P. Cincilla, A. Kaiser, B. Lonc, H. Labiod, R. Blancher, C. Jouvray, R. Denis & A. Boulanger. (2015). Security of C-ITS messages: A practical solutions the ISE project demonstrator. 7th International conference on New Technologies, Mobility and Security (NTMS)2015. DOI : 10.1109/NTMS.2015.7266520.
  5. W. Tang, M. Yang, Z. Lv, Q. Qian, T. Su, B. Wang & C. Wang. (2018). MicroIV: A Cooperative driving hardware simulation platform for cooperative ITS. IEEE Transactions on Vehicular Technology, 67(10), 9173-9182. DOI : 10.1109/TVT.2018.2862416
  6. E. Cinque, F. Valentini, A. Lovine & M. Pratesi. (2017). An adaptive strategy to mitigate instability in the ETSI DCC: Experimental validation. 15th ITSI2017. DOI : 10.1109/ ITST.2017.7972223.
  7. Z. Kailong, W. Min, S. Hang, Y. Ansheng, A. de La Fortelle & M. Kejian. (2017). QoS-ITS: A simulator for servie oriented cooperative ITS of intelligent vehicles. IEEE/ACIS 16th ICIS2017. DOI : 10.1109/ICIS.2017.7960093.
  8. R. D. Mushrall, M. D. Furtado & H. Liu. (2018). EmuLab of security credential management system (SCMS) for vehicular communications. IEEE 88th Vehicular Technology Conference (VTC-Fall) 2018. DOI : 10.1109/VTCFall.2018.8690778.
  9. M. D. Furthado, R. D. Mushrall & H. Liu. (2018). Threat analysis of the security credential management system for vehicular communication. IEEE HST2018. DOI : 10.1109/THS.2018.8574206.
  10. M. Randriamasy, A. Carbani, H. Chafouk & G. Fremont. (2019). Formally validated of novel tolling service with the ITS G5. IEEE Access, 7, 41133-41144. DOI : 10.1109/ACCESS.2019.2906046
  11. M. A. Simplicio, E. L. Cominetti, H. K. Patil, J. E. Ricardini, M. Vinicius & M. Silva. (2018). The unified butterfly effect: efficient security credential management system for vehicular communications. IEEE VNC2018. DOI : 10.1109/VNC.2018.8628369.
  12. C. W. Chen, S. Y. Chang, Y. C. Hu & Y. W. Chen. (2017). Protecting vehicular networks privacy in the presence of a single adversarial authority. IEEE CNS2017. DOI : 10.1109/CNS.2017.8228648.
  13. S. Jha, C. Yavvari & D. Wijesekera. (2018). Pseudonym certificate validations under heavy vehicular traffic loads. IEEE VNC2018. DOI : 10.1109/VNC.2018.8628399
  14. M. A. S. Junior, E. L. Cominetti, H. K. Patil, J. Ricardini, L. Ferraz & M. V. Silva. (2018). Privacy preserving method for temporarily linking/revoking pseudonym certificates in VANETs. 17th IEEE TrustCom/BigDataSE2018.
  15. R. Barskar, M. Ahirwar & R. Vishwakarma. (2016). Secure key management in vehicular ad hoc network: A review. SCOPES 2016. DOI : 10.1109/SCOPES.2016.7955730.
  16. H. Liang, M. Jagielski, B. Zheng, C. W. Lin, E. Kang, S. Shiraishi, C. N. Rotaru & Q. Zhu. (2018). Network and System Level Security in Connected Vehicle Applications. IEEE/ACM ICCAD2018. DOI : 10.1145/3240765.3243488.
  17. M. A. Simplicio Jr., E. L. Cominetti, H. K. Patil, J. E. Ricardini, M. Vinicius & M. Silva. (2018). ACPC: Efficient revocation of pseudonym certificates using activation codes. Journal of ScienceDirect ELESEVIER, 90, 2019. DOI : 10.1016/j.adhoc.2018.07.007.