DOI QR코드

DOI QR Code

Pseudomonas tolaasii bacteriophage-specific polyclonal antibody formation and its cross reactivity to various phages

Pseudomonas tolaasii 박테리오파지에 특이적인 다클론항체 형성 및 이를 이용한 파지 교차 반응성

  • Yun, Yeong-Bae (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Park, Soo-Jin (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2019.07.17
  • Accepted : 2019.08.26
  • Published : 2019.09.30

Abstract

Pseudomonas tolaasii causes brown blotch disease on the oyster mushroom (Pleurotus ostreatus). Various pathogenic strains of P. tolaasii were isolated and divided into three subtypes, $P1{\alpha}$, $P1{\beta}$, and $P1{\gamma}$. For phage therapy, bacteriophages against to these subtype strains were applied to mushroom cultivation and very successful to prevent from the disease. In this study, bacteriophages were isolated against the representative strains of subtype pathogens and their polyclonal antibodies were synthesized to investigate structural relationship among capsid proteins of phages. Phage preparations over $10^{10}pfu/mL$ were injected to rabbit thigh muscle and polyclonal antibodies were obtained after three times of boost injection. Titers of the antibodies obtained were over $2{\times}10^7Ab/mL$ for the phage ${\phi}6264$, $1{\times}10^6Ab/mL$ for the phage ${\phi}HK2$, and $1{\times}10^7Ab/mL$ for the phage ${\phi}HK19$ and phage ${\phi}HK23$. High specific activities were observed between antibodies and the corresponding bacteriophages. Some cross-reactivities between the antibodies and non-corresponding bacteriophages were also measured. Antibody $Ab{\phi}6264$ inactivated all phages of $P1{\alpha}$ subtype and only phage ${\phi}HK16$ among $P1{\beta}$ subtype phages. Antibody $Ab{\phi}HK23$ of $P1{\gamma}$ subtype neutralized all phages of $P1{\beta}$ subtype as well as the phage ${\phi}HK23$, showing the widest phage-inactivation range. When the structural-similarity studies of phages were investigated by using phage antibodies, closeness obtained by phylogenetic analysis of 16S rRNA genes of pathogenic strains were quite different from that of polyclonal antibody-specific structural similarity of phage capsid proteins. In conclusion, there is weak correlation between the host strain specificity of bacteriophage and its capsid structural similarity measured by phage antibodies.

Pseudomonas tolaasii는 느타리버섯에 갈반병을 일으키는 병원균주로, 다양한 변이균주들을 분리하여 $P1{\alpha}$$P1{\beta}$, $P1{\gamma}$ 세 가지 소그룹으로 분류하였다. 각 그룹별 균주들에 특이적인 박테리오파지를 이용한 파지테라피는 갈반병 방제에 매우 성공적이었다. 본 연구에서는, 박테리오파지들의 특성을 구명하기 위하여 소그룹별 대표균주을 이용하여 파지를 분리하였고, 이들의 다클론항체를 제작하여 파지들 사이에 유연관계를 조사하였다. 파지 준비물은 $10^{10}pfu/mL$ 이상으로 토끼의 다리 근육에 주사하였고, 3회의 반복주사에 의해 다클론항체가 얻어졌다. 파지 ${\phi}6264$에 대한 항체의 역가는 $2{\times}10^7Ab/mL$ 이상, 파지 ${\phi}HK2$에 대해서는 $1{\times}10^6Ab/mL$, 파지 ${\phi}HK19$${\phi}HK23$에 대해서는 $1{\times}10^7Ab/mL$ 이상이었다. 항체와 이에 특이적인 파지 사이에는 매우 높은 반응특이성이 있었고, 소그룹이 다른 파지의 항체와 파지 사이에도 일부 교차반응성을 확인하였다. 파지 ${\phi}6264$에서 생성된 $Ab{\phi}6264$는 모든 $P1{\alpha}$ 소그룹의 파지들과 반응성을 보였으나, 파지 ${\phi}HK16$을 제외한 다른 소그룹의 파지들과는 반응하지 않았다. $P1{\gamma}$ 소그룹에서 생성된 $Ab{\phi}HK23$$P1{\beta}$ 소그룹의 모든 파지들을 불활성화시켜 가장 넓은 항체범위를 보였다. 항체와 파지를 이용한 숙주균과의 관계를 분석하였을 때, 16S rRNA 유전자 분석에 의한 숙주균의 근연관계와 항체를 이용한 숙주균의 파지들 사이의 구조적 근연관계는 상당히 차이가 있음을 확인하였다. 결론적으로, 박테리오파지의 숙주균 특이성과 항체를 이용해 측정한 파지의 껍질단백질 구조유사성 사이에는 약한 상관성을 보였다.

Keywords

References

  1. Tolera KD, Abera S (2017) Nutritional quality of oyster mushroom (Pleurotus ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci Nutr 5: 989-996 https://doi.org/10.1002/fsn3.484
  2. Visioli F, Poli A, Richard D, Paoletti R (2008) Modulation of inflammation by nutritional interventions. Curr Atheroscler Rep 10:451-453 https://doi.org/10.1007/s11883-008-0069-0
  3. Schneider I, Kressel G, Meyer A, Krings U, Berger RG, Hahn A (2011) Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. J Funct Foods 3: 17-24 https://doi.org/10.1016/j.jff.2010.11.004
  4. Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant Pathol 39:57-70 https://doi.org/10.1016/0885-5765(91)90031-C
  5. Wells JM, Sapers GM, Fett WF, Butterfield JE, Jones JB, Bouzar H, Miller FC (1996) Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. reactans, and P. gingeri. Phytopathology 86: 1098-1104 https://doi.org/10.1094/Phyto-86-1098
  6. Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25: 219-232 https://doi.org/10.1016/j.chom.2019.01.014
  7. Lin DM, Koskella B, Lin HC (2017) Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8: 162-173 https://doi.org/10.4292/wjgpt.v8.i3.162
  8. Yun YB, Park SW, Cha JS, Kim YK (2013) Biological characterization of various strains of Pseudomonas tolaasii that causes brown blotch disease. J Korean Soc Appl Biol Chem 56: 41-45 https://doi.org/10.1007/s13765-012-2242-y
  9. Haji-Ghassemi O, Blackler RJ, Young NM, Evans SV (2015) Antibody recognition of carbohydrate epitopes. Glycobiology 25: 920-952 https://doi.org/10.1093/glycob/cwv037
  10. Yun YB (2013) Characterization of Pseudomonas tolaasii strains and their bacteriophages for the biological control of brown blotch disease. Dissertation, Chungbuk National University
  11. Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9: 148 https://doi.org/10.1186/1471-2180-9-148
  12. Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brussow H (2004) In vitro and in vivo bacteriolytic activities of Escherichia coli phages: Implications for phage therapy. Antimicrob Agents Chemother 48: 2558-2569 https://doi.org/10.1128/AAC.48.7.2558-2569.2004
  13. Leenaars M, Hendriksen CF (2005) Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J 46: 269-279 https://doi.org/10.1093/ilar.46.3.269
  14. Halliday LC, Artwohl JE, Bunte RM, Ramakrishnan V, Bennett BT (2004) Effects of Freund's complete adjuvant on the physiology, histology, and activity of New Zealand White rabbits. Contemp Top Lab Anim Sci 43: 8-13
  15. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9:e93827 https://doi.org/10.1371/journal.pone.0093827
  16. Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17: 840-862 https://doi.org/10.1128/CMR.17.4.840-862.2004
  17. Jo JH, Kennedy EA, Kong HH (2016) Research techniques made simple: Bacterial 16S ribosomal RNA gene sequencing in cutaneous research. J Invest Dermatol 136: e23-e27 https://doi.org/10.1016/j.jid.2016.01.005
  18. Mu LL, Yun YB, Park SJ, Cha JS, Kim YK (2015) Various pathogenic Pseudomonas strains that causes brown blotch disease in cultivated mushrooms. J Appl Biol Chem 58: 349-354 https://doi.org/10.3839/jabc.2015.055
  19. Zaczek M, Lusiak-Szelachowska M, Jonczyk-Matysiak E, Weber-Dabrowska B, Miedzybrodzki R, Owczarek B, Kopciuch A, Fortuna W, Rogoz P, Gorski A (2016) Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front Microbiol 7: 1681
  20. Shi E, Fury W, Li W, Mikulka W, Aldrich T, Rafique A, Chen G, Hoffenberg S, Daly TJ, Radziejewski C (2006) Monoclonal antibody classification based on epitope-binding using differential antigen disruption. J Immunol Methods 314: 9-20 https://doi.org/10.1016/j.jim.2006.05.007
  21. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibodyantigen recognition. Front Immunol 4: 302 https://doi.org/10.3389/fimmu.2013.00302
  22. Pratihar S, Sabo TM, Ban D, Fenwick RB, Becker S, Salvatella X, Griesinger C, Lee DH (2016) Kinetics of the antibody recognition site in the third IgG-binding domain of protein G. Angew Chem Int Ed Engl 55:9567-9570 https://doi.org/10.1002/anie.201603501