DOI QR코드

DOI QR Code

Study on the Fourth Industrial Revolution and Clinical Laboratory Science Techniques

4차 산업혁명과 임상검사과학기술에 관한 연구

  • Sung, Hyun Ho (Department of Clinical Laboratory Science, Dongnam Health University) ;
  • Choi, Kwang-Mo (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Jung, You Hyun (Department of Biomedical Laboratory Science, Dankook University College of Health Sciences) ;
  • Cho, Eun Kyung (Department of Biomedical Laboratory Science, Kyungwoon University)
  • 성현호 (동남보건대학교 임상병리과) ;
  • 최광모 (삼성서울병원 진단검사의학과) ;
  • 정유현 (단국대학교 임상병리학과) ;
  • 조은경 (경운대학교 임상병리학과)
  • Received : 2019.08.19
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

The aim of this study was to introduce clinical laboratory science techniques with the core technology of the 4th Industrial Revolution. Among the core technologies of the 4th Industrial Revolution, AI, IOT, block-chain, robotics, and nanotechnology were analyzed and linked by themes. The scope of the job of clinical laboratory technologists (also known as medical laboratory technologists and medical technologists) is laboratory medicine testing, pathology testing, and clinical physiology testing. Through a number of previous papers, 73 linkages in the laboratory medicine area, 27 linkages in the pathology area, and 47 linkages in the clinical physiology area were examined. In the 4th industrial revolution and clinical laboratory science techniques, AI (4), IOT (3), block-chain (4), robotics (3) and nanotechnology (15) sectors were surveyed. The limitation of this study was the limitation in collecting and analyzing all the data and non-clinical areas were not analyzed. In addition, there was no validity test and no similar study. In conclusion, the core technologies of the 4th industrial revolution and clinical laboratory science techniques are closely related. Therefore, further research on the future and social benefits of clinical laboratory science techniques is needed.

본 연구의 목적은 4차 산업혁명 핵심기술과 연계된 임상검사 과학기술을 소개하는 것이다. 4차 산업혁명 핵심기술 중 인공지능, 사물인터넷, 블록체인, 로봇, 나노기술, 총 5개의 핵심기술을 테마별 분석 연계하였다. 임상병리사의 업무범위는 검사의 학검사, 병리검사, 임상생리검사이다. 검사의학 분야의 최근기술은 73개, 병리학 분야는 27개, 임상생리학 분야는 47개로 조사하였다. 4차 산업혁명과 임상검사과학기술 연계는 인공지능은 4개, 사물인터넷 3개, 블록체인 4개, 로봇 3개, 나노기술 15개로 조사하였다. 본 연구의 제한점은 모든 자료를 수집 분석에는 한계가 있었다. 비임상분야는 분석하지 못했다. 그리고 타당성 확인이 없었고 비슷한 연구가 없었다. 결론으로 4차 산업혁명 핵심기술과 임상검사과학기술은 밀접한 관련이 있다. 따라서 임상검사과학기술의 사회적 이익과 분야별 관련 후속 연구가 필요하다.

Keywords

References

  1. Zhou K, Liu T, Zhou L. Industry 4.0: Towards future industrial opportunities and challenges. International Conference on Fuzzy Systems and Knowledge Discovery. 2015;12:2147-2152. https://doi.org/10.1109/FSKD.2015.7382284.
  2. Lee M, Yun J, Pyka A, Won D, Kodama F, Schiuma G, Yan MR, et al. How to respond to the fourth industrial revolution, or the second information technology revolution? dynamic new combinations between technology, market, and society through open innovation. J Open Innov Technol Mark Complex. 2018;4:21. https://doi.org/10.3390/joitmc4030021.
  3. Schwab K. The fourth industrial revolution. New York: Currency; 2017. p1-183.
  4. Park SC. The fourth industrial revolution and implications for innovative cluster policies. AI and Society. 2018;33:433-445. https://doi.org/10.1007/s00146-017-0777-5.
  5. Yoon DY. What we need to prepare for the fourth industrial revolution. Healthc Inform Res. 2017;23:75-76. https://doi.org/10.4258/hir.2017.23.2.75.
  6. Chang SG. The fourth industrial revolution and changes in the future medical world. J Korean Med Assoc. 2017;60:856-858. https://doi.org/10.5124/jkma.2017.60.11.856.
  7. Vazirani AA, O'Donoghue O, Brindley D, Meinert E. Implementing blockchains for efficient health care: Systematic Review. J Med Internet Res. 2019;21:E12439. http://doi.org/10.2196/12439.
  8. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: Promises and challenges. Regen Med. 2008;3:93-103. https://doi.org/10.2217/17460751.3.1.93.
  9. Yambe T, Yoshizawa M, Tanaka A, Abe KI, Kawano S, Matsuki H, et al. Recent progress in artificial organ research at Tohoku university. Artif Organs. 2003;27:2-7. https://doi.org/10.1046/j.1525-1594.2003.07181.x.
  10. Liu F, Liu C, Chen Q, Ao Q, Tian X, Fan J, et al. Progress in organ 3D bioprinting. Int J Bioprint. 2018;4:1-15. http://dx.doi.org/10.18063/IJB.v4i1.128.
  11. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19:671-687. https://doi.org/10.1038/s41576-018-0051-9.
  12. Wu W, Yang Y, Lei H. Progress in the application of CRISPR: from gene to base editing. Med Res Rev. 2019;39:665-683. https://doi.org/10.1002/med.21537.
  13. Brunet BCFK, Toorabally MB, Wu W, Liu J. The Progress of next generation sequencing in preimplantation genetic testing. Arch Clin Biomed Res. 2018;2:132-144. https://doi.org/10.26502/acbr.5017052.
  14. Fong Y, Woo Y, Giulianotti PC. Robotic surgery: The promise and finally the progress. Hepatobiliary Surg Nutr. 2017;6:219-221. https://doi.org/10.21037/hbsn.2017.04.04.
  15. Mattick JS, Dziadek MA, Terrill BN, Kaplan W, Spigelman AD, Bowling FG, et al. The impact of genomics on the future of medicine and health. Med J Aus. 2014;201:17-20. https://doi.org/10.5694/mja13.10920.
  16. Duarte T, Spencer C. Personalized proteomics: The future of precision medicine. Proteomes. 2016;4:29. https://doi.org/10.3390/proteomes4040029.
  17. Statistics Korea. 2017 number of enterprises engaged in the 4th industrial revolution [Internet]. Seoul: Statistics Korea; 2018 [cited 2019 August 15]. Available from: http://kosis.kr/upsHtml/online/downSrvcFile.do?PUBCODE=BL&FILE_NAME=/BL/09050902.xlsx&SEQ=284.
  18. Koo BK. Professional certification of medical technologists in Korea, Japan, and United States of America. Korean J Clin Lab Sci. 2019;51:1-14. https://doi.org/10.15324/kjcls.2019.51.1.1.
  19. Kricka LJ, Polsky TG, Park JY, Fortina P. The future of laboratory medicine - A 2014 perspective. Clinica Chimica Acta. 2015;438:284-303. https://doi: 10.1016/j.cca.2014.09.005.
  20. Nakamura RM. Technology that will initiate future revolutionary changes in healthcare and the clinical laboratory. J Clin Lab Anal. 1999;13:49-52. https://doi.org/10.1002/(SICI)1098-2825(1999)13:2<49::AID-JCLA1>3.0.CO;2-Z
  21. Wilkinson DS. The role of technology in the clinical laboratory of the future. Clin Lab Manage Rev. 1997;11:322-30.
  22. O'Leary JJ. Understanding disease: A centenary celebration of the pathological society. 1st ed. Hoboken: Wiley-Blackwell; 2006. p217-231.
  23. Khardori N. Future of diagnostic microbiology. Indian J Med Microbiol. 2014:32:371-377. https://doi:10.4103/0255-0857.142233.
  24. Verma R, Das G, Manjunathachar HV, Muwel N. Advances in diagnostics of parasitic diseases: current trends and future prospects. Int J Curr Microbiol App Sci. 2018;7:3261-3277. https://doi.org/10.20546/ijcmas.2018.707.380.
  25. Hatoum Aslan A. CRISPR methods for nucleic acid detection herald the future of molecular diagnostics. Clin Chem. 2018;64:1681-1683. https://10.1373/clinchem.2018.29548.
  26. Charles DH, Jonathan RG, Carl TW. Automation in the clinical laboratory. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis: Elsevier; 2018. p370.
  27. Plebani M. Harmonization in laboratory medicine: More than clinical chemistry? Clin Chem Lab Med. 2018;56:1579-1586. https://doi.org/10.1515/cclm-2017-0865.
  28. Oyaert M, Delanghe J. Progress in automated urinalysis. Ann Lab Med. 2019;39:15-22. https://doi.org/10.3343/alm.2019.39.1.15.
  29. Roth WK. History and future of nucleic acid amplification technology blood donor testing. Transfus Med Hemother. 2019;46:67-75. https://doi.org/10.1159/000496749.
  30. Prudent M, Tissot JD, Fontana S, Niederhauser C. Transfusion medicine and blood. Front Med. 2018;5:355. https://doi.org/10.3389/fmed.2018.00355.
  31. Koutsi A, Vervesou EC. Diagnostic molecular techniques in haematology: Recent advances. Ann Transl Med. 2018;6:242. https://doi.org/10.21037/atm.2018.05.30.
  32. Wine Y, Horton AP, Ippolito GC, Georgiou G. Serology in the 21st century: The molecular-level analysis of the serum antibody repertoire. Curr Opin Immuno. 2015;35:89-97. https://doi.org/10.1016/j.coi.2015.06.009.
  33. Duffy D. Standardized immunomonitoring: separating the signals from the Noise. Trends Biotechnol. 2018;361:1107-1115. https://doi.org/10.1016/j.tibtech.2018.06.002.
  34. Fernandes AR, Oliveira A, Pereira J, Coelho PS. Nuclear medicine and drug delivery. Advanced technology for delivering therapeutics. 2017;1:159-171. http://dx.doi.org/10.5772/65708.
  35. Salto-Tellez M, James JA, Hamilton PW. Molecular pathology - the value of an integrative approach. Mol Oncol. 2014;8:1163-1168. https://doi.org/10.1016/j.molonc.2014.07.021.
  36. Roy-Chowdhuri S. Vander Laan P, et al. edithors. Molecular diagnostics in cytopathology. Basel: Springer International Publishing; 2019. p517-528.
  37. Pantanowitz L, Preffer F, Wilbur DC. Advanced imaging technology applications in cytology. Diagn Cytopathol. 2019;47:5-14. https://doi.org/10.1002/dc.23898.
  38. Rana AK. The future of forensic biology. J Appl Biomed. 2018;3:13-18. https://doi.org/10.7150/jbm.22760.
  39. Fakiha B. Technology in forensic science. The Open Access Journal of Science and Technology. 2019;7:1-10. https://doi.org/10.11131/2019/101258.
  40. Naugler C, Church DL. Automation and artificial intelligence in the clinical laboratory. Crit Rev Clin Lab Sci. 2019;56:98-110. https://doi.org/10.1080/10408363.2018.1561640.
  41. Parthasarathy P, Vivekanandan S. A typical IoT architecture-based regular monitoring of arthritis disease using time wrapping algorithm. Int J Comut Appl. 2018;1-11. https://doi.org/10.1080/1206212X.2018.1457471.
  42. Greaves RF, Bernardini S, Ferrari M, Fortina P, Gouget B, Gruson D, et al. Key questions about the future of laboratory medicine in the next decade of the 21st century: A report from the IFCC-Emerging Technologies Division. Clinica Chimica Acta, 2019;495:570-589. https://doi.org/10.1016/j.cca.2019.05.021.
  43. Gordon WJ, Catalini C. Blockchain technology for healthcare: Facilitating the transition to patient-driven interoperability. Comput Struct Biotecl. 2018;16:224-230. https://doi.org/10.1016/j.csbj.2018.06.003.
  44. Gorjikhah F, Davaran S, Salehi R, Bakhtiari M, Hasanzadeh A, Panahi Y, et al. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: A review. Artif Cells Nanomed Biotechnol. 2016;44:1609-1614. https://doi.org/10.3109/21691401.2015.1129619.
  45. Jackson TC, Patani BO, Ekpa DE. Nanotechnology in diagnosis: A review. Advances in Nanoparticles, 2017;6:93-102. https://doi.org/10.4236/anp.2017.63008.
  46. Alharbi KK, Al-sheikh YA. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci. 2014;21:109-117. https://doi.org/10.1016/j.sjbs.2013.11.001.
  47. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: A review. Clin Exp Ophthalmol. 2019;47:128-139. https://doi.org/10.1111/ceo.13381.
  48. Tandy Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018;20:1515-1521. https://doi.org/10.1038/gim.2018.38.
  49. Lee HJ, Oh SH, Chang CL. Origins and history of laboratory medicine. Lab Med Online. 2017;7:53-58. https://doi.org/10.3343/lmo.2017.7.2.53.

Cited by

  1. Genetic Polymorphisms of ARMC4, LRP4 and BCL2 Genes are Associated with Blood Pressure Traits and Hypertension in Korean Population vol.26, pp.1, 2020, https://doi.org/10.15616/bsl.2020.26.1.28