DOI QR코드

DOI QR Code

Genetic Polymorphisms of SLC8A1 Are Associated with Hypertension and Left Ventricular Hypertrophy in the Korean Population

한국인에서 SLC8A1의 유전적 다형성과 고혈압 및 좌심실 비대와 연관 연구

  • Park, Hye-Jeong (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Kim, Sung-Soo (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
  • 박혜정 (호서대학교 생명보건대학 임상병리학과) ;
  • 김성수 (호서대학교 생명보건대학 임상병리학과) ;
  • 진현석 (호서대학교 생명보건대학 임상병리학과)
  • Received : 2019.07.19
  • Accepted : 2019.08.16
  • Published : 2019.09.30

Abstract

Hypertension (HTN) is one of the major chronic diseases, and HTN is defined as being in a state of continuous high blood pressure. Left ventricular hypertrophy (LVH) is a condition in which the mass of the left ventricle has increased, and HTN is a leading cause of LVH. HTN and LVH are known to be caused by the interaction of environmental factors and genetic factors. It has been reported that the polymorphisms of SLC8A1, among the genetic factors that affect high blood pressure, are related to salt sensitivity hypertension. In this study, the genetic polymorphisms of SLC8A1 were chosen based on the Korean Genome and Epidemiology data. Logistic regression analysis was then performed for HTN and LVH. Linear regression analysis was also performed for systolic blood pressure (SBP) and diastolic blood pressure (DBP). As a result, 5 SNPs showed statistically significant associations (P<0.05) with HTN, and 10 SNPs showed statistically significant associations with LVH. rs1002671 and rs9789739 showed significant correlation at the same time with HTN and LVH. These results suggest that the polymorphisms of the SLC8A1 gene are linked to the development of HTN and LVH in Koreans. We expect these results to help us understand the pathogenic mechanisms for HTN and LVH.

고혈압(hypertension, HTN)은 지속적으로 혈압이 높은 상태를 의미하는 것으로 주요 만성 질환 중 하나이다. 좌심실 비대(left ventricular hypertrophy, LVH)는 좌심실의 질량이 증가된 상태이며, 고혈압은 좌심실 비대의 대표적인 원인이다. 고혈압과 좌심실 비대는 환경적 요인과 유전적 요인이 상호작용하여 발생하는 것으로 알려져 있다. 고혈압에 영향을 미치는 유전적 요인 중 SLC8A1의 다형성이 염분에 민감하게 반응하는 고혈압과 관련이 있다는 것이 보고되었다. 본 연구에서는 SLC8A1에서 유전적 다형성을 한국 유전체 역학 조사 사업을 기반으로 추출하였다. 그런 다음 고혈압과 좌심실 비대에 대해 로지스틱 회귀 분석을 실시하였다. 수축기 혈압과 이완기 혈압에 대한 선형 회귀 분석도 실시하였다. 그 결과, 5개의 SNP가 고혈압과 통계적으로 유의한 연관성을 보였고, 10개의 SNP가 좌심실 비대와 통계적으로 유의한 연관성을 보였다. rs1002671, rs9789739는 고혈압과 좌심실 비대에서 동시에 유의한 상관관계를 나타냈다. 이러한 결과는 SLC8A1 유전자의 다형성이 한국인에게 고혈압 및 좌심실 비대의 발병과 연관되어 있음을 의미한다. 우리는 이러한 결과를 통하여 고혈압과 좌심실 비대에 대한 발병기전을 이해하는 데에 도움을 줄 수 있을 것으로 기대된다.

Keywords

References

  1. Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol. 2017;237:60-63. https://doi.org/10.1016/j.ijcard.2017.03.002.
  2. Jin HS, Hong KW, Lim JE, Oh B. Replication of an African-American GWAS on blood pressure and hypertension in the Korean population. Genes & Genomics. 2011;33:127-132. https://doi.org/10.1007/s13258-010-0138-y.
  3. Li H, Wu T, Wang S, Li X, Qiu Y, Lin C, et al. Replication of a genome-wide association study on essential hypertension in Mongolians. Clin Exp Hypertens. 2018;40:79-89. https://doi.org/10.1080/10641963.2017.1334796.
  4. Fowdar JY, Grealy R, Lu Y, Griffiths LR. A genome-wide association study of essential hypertension in an Australian population using a DNA pooling approach. Mol Genet Genomics. 2017;292:307-324. https://doi.org/10.1007/s00438-016-1274-0.
  5. Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2017;313:F135-140. https://doi.org/10.1152/ajprenal.00427.2016.
  6. Lazzeroni D, Rimoldi O, Camici PG. From left ventricular hypertrophy to dysfunction and failure. Circ J. 2016;80:555-564. https://doi.org/10.1253/circj.CJ-16-0062.
  7. Sano M, Kamitsuji S, Kamatani N, Tabara Y, Kawaguchi T, Matsuda F, et al. Genome-wide association study of absolute QRS voltage identifies common variants of TBX3 as genetic determinants of left ventricular mass in a healthy japanese population. PLoS One. 2016;11:e0155550. https://doi.org/10.1371/journal.pone.0155550.
  8. Barve RA, Gu CC, Yang W, Chu J, Davila-Roman VG, de las Fuentes L. Genetic association of left ventricular mass assessed by M-mode and two-dimensional echocardiography. J Hypertens. 2016;34:88-96. https://doi.org/ 10.1097/HJH.0000000000000765.
  9. Park JK, Kim MK, Choi BY, Jung Y, Song K, Kim YM, et al. Validation study of candidate single nucleotide polymorphisms associated with left ventricular hypertrophy in the Korean population. BMC Med Genet. 2015;16:13. https://doi.org/10.1186/s12881-015-0158-1.
  10. Arnett DK, Li N, Tang W, Rao DC, Devereux RB, Claas SA, et al. Genome-wide association study identifies single-nucleotide polymorphism in KCNB1 associated with left ventricular mass in humans: the HyperGEN Study. BMC Med Genet. 2009;10:43,2350-10-43. https://doi.org/10.1186/1471-2350-10-43.
  11. Gamil S, Erdmann J, Abdalrahman IB, Mohamed AO. Association of NOS3 gene polymorphisms with essential hypertension in Sudanese patients: a case control study. BMC Med Genet. 2017;18:128,017-0491-7. https://doi.org/10.1186/s12881-017-0491-7.
  12. Kim YR, Hong SH. Associations of MicroRNA Polymorphisms (miR-146a, miR-196a2, and miR-499) with the risk of hypertension in the Korean population. Genet Test Mol Biomarkers. 2016;20:420-426. https://doi.org/10.1089/gtmb.2016.0039.
  13. Huang F, Zhu P, Huang Q, Yuan Y, Lin F, Li Q. Associations between gene polymorphisms of the apelin-APJ system and the risk of hypertension. Blood Press. 2016;25:257-262. https://doi.org/10.3109/08037051.2016.1156905.
  14. Yang L, Tian RG, Chang PY, Yan MR, Su XL. Association of SNPs in the $PPAR{\gamma}$ gene and hypertension in a Mongolian population. Genet Mol Res. 2015;14:19295-19308. https://doi.org/10.4238/2015.December.29.39.
  15. Liu K, Liu Z, Qi H, Liu B, Wu J, Liu Y, et al. Genetic variation in SLC8A1 gene involved in blood pressure responses to acute salt loading. Am J Hypertens. 2018;31:415-421. https://doi.org/10.1093/ajh/hpx179.
  16. Liu Z, Qi H, Liu B, Liu K, Wu J, Cao H, et al. Genetic susceptibility to salt-sensitive hypertension in a Han Chinese population: a validation study of candidate genes. Hypertens Res. 2017;40:876-884. https://doi.org/10.1038/hr.2017.57.
  17. Citterio L, Simonini M, Zagato L, Salvi E, Delli Carpini S, Lanzani C, et al. Genes involved in vasoconstriction and vasodilation system affect salt-sensitive hypertension. PLoS One. 2011; 6:e19620. https://doi.org/10.1371/journal.pone.0019620.
  18. Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Aspects Med. 2013;34:220-235. https://doi.org/10.1016/j.mam.2012.07.003.
  19. Quednau BD, Nicoll DA, Philipson KD. The sodium/calcium exchanger family-SLC8. Pflugers Arch. 2004;447:543-548. https://doi.org/10.1007/s00424-003-1065-4
  20. Guo GL, Sun LQ, Sun MH, Xu HM. LncRNA SLC8A1-AS1 protects against myocardial damage through activation of cGMP-PKG signaling pathway by inhibiting SLC8A1 in mice models of myocardial infarction. J Cell Physiol. 2019;234:9019-9032. https://doi.org/10.1002/jcp.27574.
  21. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527-534. https://doi.org/10.1038/ng.357.
  22. Tuinstra CL, Rautaharju PM, Prineas RJ, Duisterhout JS. The performance of three visual coding procedures and three computer programs in classification of electrocardiograms according to the Minnesota Code. J Electrocardiol. 1982;15:345-350. https://doi.org/10.1016/S0022-0736(82)81007-8
  23. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263-265. https://doi.org/10.1093/bioinformatics/bth457
  24. Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics. 1987;117:331-341. https://doi.org/10.1093/genetics/117.2.331
  25. Lovic D, Narayan P, Pittaras A, Faselis C, Doumas M, Kokkinos P. Left ventricular hypertrophy in athletes and hypertensive patients. J Clin Hypertens (Greenwich). 2017;19:413-417. https://doi.org/10.1111/jch.12977.
  26. Menick DR, Li MS, Chernysh O, Renaud L, Kimbrough D, Kasiganesan H, et al. Transcriptional pathways and potential therapeutic targets in the regulation of Ncx1 expression in cardiac hypertrophy and failure. Adv Exp Med Biol. 2013;961:125-135. https://doi.org/10.1007/978-1-4614-4756-6_11.
  27. Jin HS, Park S. Association of the CD226 genetic polymorphisms with risk of tuberculosis. Biomed Sci Lett. 2017;23:89-95. http://dx.doi.org/10.15616/BSL.2017.23.2.89.
  28. Choi SY, Kim JI, Hwang SW. The comparison of risk factors for ischemic stroke or intracranial hemorrhage in Korean stroke patients. Biomed Sci Lett. 2018;24:405-410. https://doi.org/10.15616/BSL.2018.24.4.405.
  29. Lee SI, Jin HS, Park S. Association of genetic polymorphism of IL-2 receptor subunit and tuberculosis case. Biomed Sci Lett. 2018;24:94-101. https://doi.org/10.15616/BSL.2018.24.2.94.