참고문헌
- Kim DH (2013) Bayesian statistics using R and WinBUGS. Freedom Academy, Paju, 384 p
- Kim HA, Seo YI, Cha HK, Kang HJ, Zhang CI (2018) A study on the estimation of potential yield for Korean west coast fisheries using the holistic production method (HPM). J Korean Soc Fish Ocean Tech 54(1):38-53 https://doi.org/10.3796/KSFOT.2018.54.1.038
- Nam JO, Sim SH, Kwon OM (2015) Estimating optimal harvesting production of yellow croaker caught by multiple fisheries using hamiltonian method. J Fish Bus Admin 46(2):59-74 https://doi.org/10.12939/FBA.2015.46.2.059
- Park CS, Lee DW, Kim ZG, Kang YJ (2000) Stock assessment and management of the hairtail, Trichiurus lepturus Linnaeus in Korean waters. J Korean Soc Fish Res 3:29-38
- Lim JH (2018) A comparative study on the estimation methods for the potential yield in the Korean waters of the East Sea. Ph.D. Thesis, Pukyong National University, 114 p
- Lim JH, Seo YI, Zhang CI (2018) A comparative study on the estimation methods for the potential yield in the Korean waters of the East Sea. J Korean Soc Fish Ocean Tech 54(2):124-137 https://doi.org/10.3796/KSFOT.2018.54.2.124
- Zhang CI, Kim SA, Yoon SB (1992) Stock assessment and management implications of small yellow croker in Korean waters. Kor J Fish Aquat Sci 25(4):282-290
- KOSIS (2018) Fishery production survey. http://kosis.kr Accessed 22 Feb 2019
- Bolker B (2008) Ecological models and data in R. Princeton University Press, New Jersey, 396 p
- Boerema L, Gulland J (1973) Stock assessment of the Peruvian anchovy (Engraulis ringens) and management of the fishery. J Fish Board Can 30(12):2226-2235 https://doi.org/10.1139/f73-351
- Chaloupka M, Balazs G (2007) Using Bayesian state-space modelling to assess the recovery and harvest potential of the Hawaiian green sea turtle stock. Ecol Mmodel 205:93-109 https://doi.org/10.1016/j.ecolmodel.2007.02.010
- Clarke R, Yoshimoto S, Pooley S (1992) A bioeconomic analysis of the Northwestern Hawaiian Islands lobster fishery. Mar Resour Econ 7(3):115-140 https://doi.org/10.1086/mre.7.3.42629029
- de Valpine P, Hilborn R (2005) State-space likelihoods for nonlinear fisheries time-series. Can J Fish Aquat Sci 62(9):1937-1952 https://doi.org/10.1139/f05-116
- FAO (2016) The state of world fisheries and aquaculture. http://www.fao.org/3/i9540en/i9540en.pdf Accessed 27 Feb 2019
- FAO (2018) FishStatJ. http://www.fao.org Accessed 27 Feb 2019
- Fox W (1970) An exponential surplus yield model for optimizing exploited fish populations. T Am Fish Soc 99(1):80-88 https://doi.org/10.1577/1548-8659(1970)99<80:AESMFO>2.0.CO;2
- Haddon M (2010) Modelling and quantitative methods in fisheries. CRC press, Florida, 465 p
- Hilborn R, Walters C (1992) Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Rev Fish Biol Fish 2(2):177-178 https://doi.org/10.1007/BF00042883
- ICCAT (2008) Report of the standing committee on research and statistics (SCRS). https://www.iccat.int/com2018/ENG/PLE_104_ENG.pdf Accessed 27 Feb 2019
- Kery M, Schaub M (2011) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Cambridge, 554 p
- Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10(4):325-337 https://doi.org/10.1023/A:1008929526011
- McAllister M (2014) A generalized Bayesian surplus production stock assessment software (BSP2). Collect Vol Sci Pap ICCAT 70(4):1725-1757
- McAllister M, Ianelli J (1997) Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Can J Fish Aquat Sci 54(2):284-300 https://doi.org/10.1139/f96-285
- McAllister M, Pikitch E, Babcock E (2001) Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Can J Fish Aquat Sci 58(9):1871-1890 https://doi.org/10.1139/f01-114
- McAllister M, Pikitch E, Punt A, Hilborn R (1994) A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can J Fish Aquat Sci 51(12):2673-2687 https://doi.org/10.1139/f94-267
- Meyer R, Millar R (1999) Bayesian stock assessment using a state-space implementation of the delay difference model. Can J Fish Aquat Sci 56(1):37-52 https://doi.org/10.1139/f98-146
- Millar R, Meyer R (2000a) Bayesian state-space modeling of age-structured data: fitting a model is just the beginning. Can J Fish Aquat Sci 57(1):43-50 https://doi.org/10.1139/f99-169
- Millar R, Meyer R (2000b) Non?linear state space modelling of fisheries biomass dynamics by using Metropolis Hastings within Gibbs sampling. J Roy Stat Soc C-App 49(3):327-342 https://doi.org/10.1111/1467-9876.00195
- NIFS (2016) Study on the estimation of fishing power according to the development of fishing vessels and gears. National Institute of Fisheries and Science, Gijang, 114 p
- Polacheck T, Hilborn R, Punt A (1993) Fitting surplus production models: comparing methods and measuring uncertainty. Can J Fish Aquat Sci 50(12):2597-2607 https://doi.org/10.1139/f93-284
-
Punt A (1990) Is
$B_1$ = K an appropriate assumption when applying an observation error production-model estimator to catch-effort data? S Afr J Marine Sci 9(1):249-259 https://doi.org/10.2989/025776190784378925 - Punt A, Hilborn R (1997) Fisheries stock assessment and decision analysis: the Bayesian approach. Rev Fish Biol Fisher 7(1):35-63 https://doi.org/10.1023/A:1018419207494
- Pyo HD (2006) A comparative analysis of surplus production models and a maximum entropy model for estimating the anchovy's stock in Korea. Stud Edu Fishe Marine Sci 18(1):19-30
- Schaefer M (1954) Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Sr Imter Amer Trop T 1(2):23-56
- Schnute J (1977) Improved estimates from the Schaefer production model: theoretical considerations. J Fish Board Can 34(5):583-603 https://doi.org/10.1139/f77-094
- Seo YI, Hwang KS, Cha HK, Oh TY, Jo HS, Kim BY, Lee YW (2017) Change of relative fishing power index from technological development in the offshore large powered purse seine fishery. J Kor Soc Fish Technol 53(1):12-18 https://doi.org/10.3796/KSFT.2017.53.1.012
- Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user manual, version 1.4. Medical Research Council Biostatistics Unit, Cambridge, 60 p
- Uhler R (1980) Least squares regression estimates of the Schaefer production model: some Monte Carlo simulation results. Can J Fish Aquat Sci 37(8):1284-1294 https://doi.org/10.1139/f80-164
- Winker H, Carvalho F, Kapur M (2018) JABBA: just another bayesian biomass assessment. Fisher Res 204:275-288 https://doi.org/10.1016/j.fishres.2018.03.010
- Zhang CI, Lee JB (2001) Stock assessment and management implications of horse mackerel (Trachurus japonicus) in Korean waters, based on the relationships between recruitment and the ocean environment. Prog Oceanogr 49:513-537 https://doi.org/10.1016/S0079-6611(01)00038-6
- Zhang CI, Kim S, Gunderson D, Marasco R, Lee JB, Park HW, Lee JH (2009) An ecosystem-based fisheries assessment approach for Korean fisheries. Fisher Res 100(1):26-41 https://doi.org/10.1016/j.fishres.2008.12.002