DOI QR코드

DOI QR Code

Characteristics of methane and propane leaking gas images

methane과 propane의 누출 Optical Gas Image의 특성연구

  • Received : 2018.12.27
  • Accepted : 2019.08.23
  • Published : 2019.08.31

Abstract

In this paper is image characteristics of main gas can be a basic data for the identification of the type of leaking gas and the estimation of the emission quantity in OGI(Optical Gas Image) technology. The purpose of this research is to observe the differences of leaking gas images of the two important hydrocarbons of methane and propane in the industry. We fabricated a wind shield of quartz-based with infrared-permeable properties was prepared and methane and propane were simultaneous emission and then photographed with an infrared OGI camera and we are analyzed it. We have a stable image with windbreak of quartz-based minimizes the effect of wind. As a result of analyzing the image of two hydrocarbons with a leakage gas reference value of 1 L/min, an easily recognizable distances by OGI camera were 6 m for methane and 9 m for propane. In the distances range of 1 to 10 m between the infrared camera and the leaking gas point, the gas plume size of the propane gas was larger and clear than that of the methane gas plume. Compared with the number of points in the image, propane was 3.8 times more than methane.

OGI(Optical Gas Image) 기술에서 주요 가스의 이미지 특성연구는 누출가스의 종류 파악 및 배출량 추정의 기초자료가 될 수 있다. 본 연구의 목적은 산업에서 중요한 methane과 propane 두 탄화수소의 분출가스 이미지의 차이를 관찰하기 위함이다. 적외선을 투과하는 성질을 지닌 석영을 끼운 바람차단막을 제작하여 methane과 propane을 동시에 누출하게 하여 적외선 OGI 카메라로 촬영하고, 그 영상을 분석하였다. 석영차단막이를 활용하여 바람의 영향을 최소화하여 안정된 영상을 확보하였다. 누출 기준값을 1 L/min로 하여 두 탄화수소의 영상을 분석한 결과 OGI 카메라로 쉽게 식별 가능한 거리가 methane의 경우 6 m, propane의 경우 9 m로 나타났다. 적외선 카메라와 누출지점의 거리 1~10 m까지에서 propane의 경우가 methane의 경우 보다 gas plume의 크기가 컸으며 선명하였다. 영상 이미지의 점의 수로 비교하면 propane이 methane보다 평균 3.8배 많았다.

Keywords

References

  1. Park, Suri, Experimental research on application of OGI technique & system set up for Safety․Health․Environment of Chemical Industry, Soongsil Univ. Dissertation, (2017)
  2. Park, S., Han, S-W., Kim, B-J., "ractical research for quantitative expression of leakage through Optical Gas Image" Journal of the Korean Institute of Gas, 21(5), 16-26, (2017) https://doi.org/10.7842/KIGAS.2017.21.5.16
  3. KOGAS-Tech., Korea Gas Technology corporation, "Environment, Health, Safety & Quality management system", 2018.01. www. kogas-tech.co.kr
  4. Safitri, A., Infrared optical imaging techniques for gas visualization and measurement, A&M Univ. Dissertation, (2011)
  5. Gas and Life,(Accessed May, 2016). Korea gas safety corporation, http://www.kgs.or.kr/kgsmain/gaslife/basic/gas_basic01.jsp
  6. IEA, Energy Sector Methane Recovery and Use, The Importance of Policy, 9-35. (2009)
  7. S-OIL, Business, production process, 2018. 10. http://www.s-oil.com/energy/Process.aspx
  8. KOSHA, Material Regulatory Information, 2018. 11. http://msds.kosha.or.kr/kcic/msdssearchAll.do
  9. FLIR, GF series User manual, 10-190. (2010)
  10. Telops, Innovative Infrared Imaging, Telops Company, Canada, (2015)
  11. FLIR, Gas detection systems, GF320 Infrared camera, 2018.01. www.flirkorea.com
  12. Per Liija, NECL:Optical gas Imaging Standard for Sensitivity and Detection of Gases, ITC. (2018)
  13. Robert G. B., jeffrey A. P., Paul D., Direct Measurements of Minimum Detectable Vapor Concentrations Using Passive Infrared Optical Imaging Systems, AWMA, (2008)
  14. Li J., Wang L., Wang M., Gao Y., Jin W., "Gas imaging detectivity model combining leakage spot and range", Proc. of SPIE, 8354, (2012)
  15. Jonas S., Martin A., "Volume flow calculations on gas leaks imaged with infrared gas-correlation", Opt. Express, 20(18), 20318-20329, (2012) https://doi.org/10.1364/OE.20.020318