DOI QR코드

DOI QR Code

Repair Cost Analysis for Chloride Ingress on RC Wall Considering Log and Normal Distribution of Service Life

로그 및 정규분포 수명함수를 고려한 콘크리트 벽체의 염해 보수비용 산정

  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2018.09.13
  • Accepted : 2018.11.28
  • Published : 2019.03.01

Abstract

Management plan with repairing is essential for RC structures exposed to chloride attack since durability problems occur with extended service life. Conventionally deterministic method is adopted for evaluation of service life and repair cost, however more reasonable repair cost can be obtained through continuous repair cost from probabilistic maintenance technique. Unlike the previous researches considering only normal distribution of life time, PLTFs (Probabilistic Life Time Function) which can be capable of handling log and normal distributions are attempted for initial and repair service life, and repair cost is evaluated for OPC and GGBFS concrete. PLTF with log distributions in initial service life is more effective to save repair cost since it is more dominant after average than normal distribution. Repair cost in GGBFS concrete decreases to 30% of OPC concrete due to longer initial service life and lower repairing event. The proposed PLTF from the work can handle not only normal distributions but also log distributions for initial and repair service life, so that it can provide more reasonable repair cost evaluation.

염해에 콘크리트 구조물은 사용기간의 증가에 따라 내구성에 문제가 발생하므로 보수를 포함한 유지관리가 필수적이다. 일반적으로 결정론적인 방법으로 내구수명이 결정되고 이에 따라 유지관리비가 평가되고 있으나, 확률론적 유지관리 기법을 고려할 경우 연속적인 보수비용이 평가되므로 합리적인 유지관리가 가능하다. 기존의 확률론적 유지관리 기법에서는 정규분포만 고려되었으나, 본 연구에서는 초기 내구수명 및 보수에 따른 수명-확률함수에 로그함수를 고려할 수 있도록 개선되었으며, OPC 및 GGBFS를 사용한 콘크리트에 대하여 보수비용을 평가하였다. 로그 함수를 가지는 수명-확률함수는 중앙값 이전보다 이후에 미치는 영향이 지배적이므로 초기 내구수명 분포에 유리하며 전반적으로 낮은 보수비용을 도출할 수 있다. GGBFS를 사용한 콘크리트는 OPC 콘크리트 비하여 높은 내구수명과 낮은 보수횟수를 통하여 30% 수준으로 보수비가 감소하였다. 본 연구에서 도출된 확률론적 유지관기 기법은 정규분포 뿐 아니라 로그분포를 가지는 수명-확률함수를 초기 및 다양한 보수시기에 적용할 수 있는 장점을 가지고 있으며, 더욱 합리적인 보수비용을 도출할 수 있다.

Keywords

References

  1. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  2. BSI. (2000), Maritime Structures: Code of Practice for General Criteria British-Standard 6349-1, British Standards Institution Group, London.
  3. CEB. (1993), CEB-FIP, Model Code 90 Bulletin 213/214, Comite Euro-International du Beton, Stuttgart.
  4. DuraCrete. (2000), Final Technical Report-Probabilistic Performance Based Durability Design of Concrete Structures Document BE95-1347/R17, European Brite-Euram Programme, Gouda.
  5. Jau, W. C., and Tsay, D. S. (1998), A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion, Cement and Concrete Research, 28(10), 1363-1371. https://doi.org/10.1016/S0008-8846(98)00117-3
  6. JSCE. (2007), Standard Specification for Concrete Structures-Design, Japan Society of Civil Engineering, Tokyo.
  7. Jung, S. H., Yang, H. M., Yang, K. H., and Kwon, S. J. (2017), Maintenance for Repaired RC Column Exposed to Chloride Attack Based on Probability Distribution of Service Life, International Journal of Concrete Structures and Materials, 2018, 1-9.
  8. KPI. (2013), Korea Price Information; Architecture, KPI(Korea Price Information), Available at: www.kpi.or.kr.
  9. Kim, S. J., Mun, J. M., Lee, H. S., and Kwon, S. J. (2014), $CO_2$ Emission and Storage Evaluation of RC Underground Structure Under Carbonation Considering Service Life and Mix Conditions with Fly Ash, The Journal of Korea Contents Association, 14(12), 999-1009. https://doi.org/10.5392/JKCA.2014.14.12.999
  10. Kwon, S. J. (2017a), Simulation on Optimum Repairing Number of Carbonated RC Structure Based on Probabilistic Approach, Journal of the Korean Recycled Construction Resources Institute, 5(3), 230-238. https://doi.org/10.14190/JRCR.2017.5.3.230
  11. Kwon, S. J. (2017b), Probability-Based $LCCO_2$ Evaluation for Undergroung Structture with Repairing Timings Exposed to Carbonation, Journal of the Korean Recycled Construction Resources Institute, 5(3), 239-246. https://doi.org/10.14190/JRCR.2017.5.3.239
  12. Li, K. L., Huang, G. H., Lin, J., and Tang, X, S. (2011), Durability of High-Volume GGBS Concrete, Advanced Materials Research, 261-263, 338-343.
  13. Lee, H. S., and Kwon, S. J. (2018), Probabilistic Analysis of Repairing Cost Considering Random Variables of Durability Design Parameters for Chloride Attack, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(1), 32-39. https://doi.org/10.11112/JKSMI.2018.22.1.032
  14. Mulubrhan, F., Mokhtar, A. A., and Muhammad, M. (2014), Integrating Reliability Analysis in Life Cycle Cost Estimation of Heat Exchanger and Pump, Advanced Materials Research, 903, 408-413. https://doi.org/10.4028/www.scientific.net/AMR.903.408
  15. Nasir, M., Chong, H. Y., and Osman, S. (2015), Probabilistic Life Cycle Cost Model for Repairable System, IOP Conference series: Materials Science and Engineering, 78(1), 1-8.
  16. Pack, S. W., Jung, M. S., Song, H. W., Kim, S. H., and Ahn, K. Y. (2010), Prediction of time dependent chloride transport in concrete structures exposed to a marine environment, Cement and Concrete Research, 40(2), 302-312. https://doi.org/10.1016/j.cemconres.2009.09.023
  17. RILEM. (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  18. Rahman, S., and Vanier, D. J. (2004), Life cycle cost analysis as a decision support tool for managing municipal infrastructure, The 16th CIB World Building Congress, CIB, Toronto, 1-11.
  19. Salem, O., Abourizk, S., and Ariaratnam, S. (2003), Risk Based Life-Cycle Costing of Infrastructure Rehabilitation and Construction Alternatives, Journal of Infrastructure Systems, 9(1), 6-15. https://doi.org/10.1061/(ASCE)1076-0342(2003)9:1(6)
  20. Thomas, M. D, A., and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA.
  21. TOTAL-LCC. (2010), Technical Manual ver.1.1.