DOI QR코드

DOI QR Code

급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials

  • 오홍섭 (경남과학기술대학교 토목공학과) ;
  • 이인희 (경남과학기술대학교 토목공학과 대학원)
  • Oh, Hongseob (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Inhee
  • 투고 : 2019.02.05
  • 심사 : 2019.04.16
  • 발행 : 2019.05.01

초록

다양한 원인에 의한 포장체에 손상이 발생하면 신속한 통행재개를 위한 급속보수가 필요하게 된다. 산화마그네슘인산염복합체의는 경화시간이 짧고, 조기 강도발현이 가능하여 급속보수재료로 적합한 특성을 갖고 있다. 연구에서는 경소마그네시아와 제1인산칼륨을 결합하여 보수재료로 개발하기 위하여 물-결합재(W/B)비, 마그네슘-인산염(M/P)비 등의 배합비를 조정하면서 경화와 강도특성을 평가하고자 하였다. 그리고 현장 적용시의 작업성을 확보하기 위하여 표준사와 일반모래에 따른 거동차이와 지연제별 특성을 평가하였다. 실험결과 물-결합재비는 35%내외와 마그네슘-인산염비는 1.0~1.2 내외가 강도측면에서 가장 적합한 것으로 분석되었다. W/B비 0.35, M/P비 1.2 변수에서 1일 강도 25.0MPa 이상 발현되어 조기 보수재료로서 활용가능성이 충분한 것으로 분석되었다. 작업시간 확보를 위해서는 붕산을 지연제로 사용하는 것이 적합한 것으로 나타났으며, 산화마그네슘의 순도는 90~95%내외가 경화시간 확보를 위해 효과적인 것으로 나타났다.

Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

키워드

참고문헌

  1. Cho, T. and Kim, M. J. (2016a) Precipitation of Magnesium Sulfate from Concentrated Magnesium Solution for Recovery of Magnesium in Seawater, Journal of Korean Institute of Resources Recycling, Vol. 25, No. 4, pp. 32-41. https://doi.org/10.7844/kirr.2016.25.4.32
  2. Cho, T. and Kim, M. J. (2016b) Production of Concentrated Magnesium Solution from Seawater using Industrial By-products, Journal of Korean Institute of Resources Recycling, Vol. 25, No. 3, pp. 63-73. https://doi.org/10.7844/kirr.2016.25.3.63
  3. Fu, Y., Cao, X. and Li, Z. (2016) Printability of Magnesium Potassium Phosphate Cement with Different Mixing Proportion for Repairing Concrete Structures in Severe Environment, Key Engineering Material, Vol. 711, pp. 989-995. https://doi.org/10.4028/www.scientific.net/KEM.711.989
  4. Hong, S. G., Kim, D. Y. and Lee, D. S. (2013) Fundamental Properties and Hydration Characteristics of Mortar based on MgO added Industrial Bu-products, Journal of the Korea Concrete Institute, Vol. 25, No. 5, pp. 565-572. https://doi.org/10.4334/JKCI.2013.25.5.565
  5. Kang, I. S., Ahn, M. Y., Paik, M. S., & Jung, S. J. (2008). A Study on Field and Hydration Properties Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement. J. Kor. Arch. Ins, 24(2), 79-86.
  6. Lee, H. G., Ann, K. Y., Sim, J. (2016) Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement, International Journal of Highway Engineering, Vol. 18, No. 1, pp. 43-55. https://doi.org/10.7855/IJHE.2016.18.1.043
  7. Lee, H. G., Oh, H., Sim, J. and Zi, G. (2013) An Experimental Study on the Multi-Deterioration Resistances of Concrete containing Waste-glass Sludge, Journal of Korean Society of Hazard Mitigation, Vol. 13, No. 2, pp. 67-74. https://doi.org/10.9798/KOSHAM.2013.13.2.067
  8. Li, J., Zhang, W. and Cao, Y. (2014) Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement, Construction and Building Materials, Vol. 58, pp. 122-128. https://doi.org/10.1016/j.conbuildmat.2014.02.015
  9. Paceagiu, J. E. N. I. C. A., and Georgescu, M. (2008). The influence of curing conditions on the physical and mechanical properties of magnesia phosphate cements. REVISTA DE CHIMIE-BUCHARESTORIGINAL EDITION-, 59(2), 135. https://doi.org/10.37358/RC.08.2.1720
  10. Park, J. W., Kim, K. H. and Ann, K. Y. (2016) Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete, Advances in Materials Science and Engineering, Vol. 2016, pp. 1-7.
  11. Qiao, F., Chau, C. and Li, Z. (2010) Property Evaluation of Magnesium Phosphate Cement Mortar as Patch Repair Material, Construction and Building Materials, Vol. 24, No. 5, pp. 695-700. https://doi.org/10.1016/j.conbuildmat.2009.10.039
  12. Song, J., Noh, Y. and Song, O. (2012) Property of MgO with Different Sintering Temperatures under High Pressures, Journal of the Korean Ceramic Society, Vol. 49, No. 6, pp. 608-613. https://doi.org/10.4191/kcers.2012.49.6.608