참고문헌
- P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez and E. Vazquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges", Computers & Security, 28(1-2), pp.18-28, 2009 https://doi.org/10.1016/j.cose.2008.08.003
- 이윤환, 이수진, "국방통합보안관제체계에서의 협업 침입탐지를 위한 탐지규칙 교환 기법", 융합보안논문지 제11권 제1호, pp.57-69, 2011.
- 김태희, 강승호, "실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템", 융합보안논문지, 제17권 1호, pp.31-38, 2017.
- 조태호, '모두의 딥러닝', 길벗, 2019.
- 나카이 에츠지. 김범주(역), '머신러닝 이론 입문', 위키북스, 2017.
- M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set", Submitted to Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), 2009
- https://www.unb.ca/cic/datasets/nsl.html
- C. Brown, A. Cowperthwaite, A. Hijazi, and A. Somayaji, "Analysis of the 1999 darpa/lincoln laboratory ids evaluation data with netadhict", IEEE SCISDA, pp.1-7, 2009.
- J. McHugh, "Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln laboratory", ACM Transaction of Information, System and Security, pp.262-294, 2000.
- Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), pp.108-116, January 2018.
- https://registry.opendata.aws/cse-cic-ids2018/
- 정윤경, 박기남, 김현주, 김종현, 현상원. "클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템", 정보보호학회논문지 vol.27, no.6, pp.1385- 1395, 2017 https://doi.org/10.13089/JKIISC.2017.27.6.1385
- V. Golovko, L. Vaitsekhovich, "Neural Network Approaches for Intrusion Detection and Recognition", International Journal of Computing, vol.5, no.3, pp.118-125, 2014
- 강승호, 정인선, 임형석, "실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법", 융합보안논문지 제18권 제5호, pp.59-66, 2018.
- Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-ge Wang and Jinjun Chen, "Detection of Malicious Code Variants Based on Deep Learning", IEEE Transactions on Industrial Informatics, 14(7), pp.3187-3196, 2018 https://doi.org/10.1109/tii.2018.2822680
- Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer, "SMOTEBoost: Improving Prediction of the Minority Class in Boosting", European Conference on Principles of Data Mining and Knowledge Discovery, pp.107-119, 2003.
- 서재현, "기계학습 방법에 기반 한 불균형 침입탐지 데이터 분류법의성능평가에 관한 연구", 한국지능시스템학회 논문지, vol.27, no.5, pp.466-474, 2017