DOI QR코드

DOI QR Code

학습 데이터 개선을 통한 Anomaly-based IDS의 성능 향상 방안

A Study on the Performance Improvement of Anomaly-Based IDS Through the Improvement of Training Data

  • 문상태 (국방대학교 국방과학학과) ;
  • 이수진 (국방대학교 국방과학학과)
  • 투고 : 2019.09.05
  • 심사 : 2019.09.21
  • 발행 : 2019.10.31

초록

최근 Anomaly 기반 침입탐지시스템에서의 탐지 기준점 생성을 위해 인공지능 기술을 적용하려는 시도가 활발하게 진행되고 있다. 그러나 인공지능 기술의 적용을 제안한 기존 연구들은 대부분 인공 신경망의 구조 개선과 최적의 하이퍼파라미터 값을 찾는데 중점을 두고 있으며, 학습 데이터의 잘못된 구성으로 인해 발생할 수 있는 다양한 문제점들은 해결하지 못하고 있다. 이에 본 논문에서는 학습 데이터의 잘못된 구성으로 인해 나타날 수 있는 주요 문제점을 실험을 통해 식별하고 학습 데이터의 재구성을 통해 그러한 문제점을 개선함으로써 침입탐지 성능을 향상시킬 수 있는 방안을 제안한다.

Recently, attempts to apply artificial intelligence technology to create the normal profile in Anomaly-based intrusion detection systems have been made actively. But existing studies that proposed the application of artificial intelligence technology mostly focus on improving the structure of artificial neural networks and finding optimal hyper-parameter values, and fail to address various problems that may arise from the misconfiguration of learning data. In this paper, we identify the main problems that may arise due to the misconfiguration of learning data through experiment. And we also propose a novel approach that can address such problems and improve the detection performance through reconstruction of learning data.

키워드

참고문헌

  1. P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez and E. Vazquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges", Computers & Security, 28(1-2), pp.18-28, 2009 https://doi.org/10.1016/j.cose.2008.08.003
  2. 이윤환, 이수진, "국방통합보안관제체계에서의 협업 침입탐지를 위한 탐지규칙 교환 기법", 융합보안논문지 제11권 제1호, pp.57-69, 2011.
  3. 김태희, 강승호, "실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템", 융합보안논문지, 제17권 1호, pp.31-38, 2017.
  4. 조태호, '모두의 딥러닝', 길벗, 2019.
  5. 나카이 에츠지. 김범주(역), '머신러닝 이론 입문', 위키북스, 2017.
  6. M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set", Submitted to Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), 2009
  7. https://www.unb.ca/cic/datasets/nsl.html
  8. C. Brown, A. Cowperthwaite, A. Hijazi, and A. Somayaji, "Analysis of the 1999 darpa/lincoln laboratory ids evaluation data with netadhict", IEEE SCISDA, pp.1-7, 2009.
  9. J. McHugh, "Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln laboratory", ACM Transaction of Information, System and Security, pp.262-294, 2000.
  10. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), pp.108-116, January 2018.
  11. https://registry.opendata.aws/cse-cic-ids2018/
  12. 정윤경, 박기남, 김현주, 김종현, 현상원. "클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템", 정보보호학회논문지 vol.27, no.6, pp.1385- 1395, 2017 https://doi.org/10.13089/JKIISC.2017.27.6.1385
  13. V. Golovko, L. Vaitsekhovich, "Neural Network Approaches for Intrusion Detection and Recognition", International Journal of Computing, vol.5, no.3, pp.118-125, 2014
  14. 강승호, 정인선, 임형석, "실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법", 융합보안논문지 제18권 제5호, pp.59-66, 2018.
  15. Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-ge Wang and Jinjun Chen, "Detection of Malicious Code Variants Based on Deep Learning", IEEE Transactions on Industrial Informatics, 14(7), pp.3187-3196, 2018 https://doi.org/10.1109/tii.2018.2822680
  16. Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer, "SMOTEBoost: Improving Prediction of the Minority Class in Boosting", European Conference on Principles of Data Mining and Knowledge Discovery, pp.107-119, 2003.
  17. 서재현, "기계학습 방법에 기반 한 불균형 침입탐지 데이터 분류법의성능평가에 관한 연구", 한국지능시스템학회 논문지, vol.27, no.5, pp.466-474, 2017