DOI QR코드

DOI QR Code

Anxiolytic Action of Taurine via Intranasal Administration in Mice

  • Jung, Jung Hwa (Department of Pharmacology and Toxicology and Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University) ;
  • Kim, Sung-Jin (Department of Pharmacology and Toxicology and Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University)
  • Received : 2018.11.08
  • Accepted : 2019.02.20
  • Published : 2019.09.01

Abstract

Taurine has a number of beneficial pharmacological actions in the brain such as anxiolytic and neuroprotective actions. We explored to test whether taurine could be transported to the central nervous system through the intranasal route. Following intranasal administration of taurine in mice, elevated plus maze test, activity cage test and rota rod test were carried out to verify taurine's effect on anxiety. For the characterization of potential mechanism of taurine's anti-anxiety action, mouse convulsion tests with strychnine, picrotoxin, yohimbine, and isoniazid were employed. A significant increase in the time spent in the open arms was observed when taurine was administered through the nasal route in the elevated plus maze test. In addition, vertical and horizontal activities of mice treated with taurine via intranasal route were considerably diminished. These results support the hypothesis that taurine can be transported to the brain through intranasal route, thereby inducing anti-anxiety activity. Taurine's anti-anxiety action may be mediated by the strychnine-sensitive glycine receptor as evidenced by the inhibition of strychnine-induced convulsion.

Keywords

References

  1. Amos, S., Akah, P. A., Enwerem, N., Chindo, B. A., Hussaini, I. M., Wambebe, C. and Gamaniel, K. K. (2004) Behavioural effect of Pavetta cassipes extract on rodents. Pharmacol. Biochem. Behav. 77, 751-759. https://doi.org/10.1016/j.pbb.2004.01.020
  2. Amos, S., Abbah, J., Chindo, B., Edmond, I., Binda, L., Adzu, B., Buhari, S., Odutola, A. A., Wambebe, C. and Gamaniel, K. (2005) Neuropharmacological effects of the aqueous extract of Nauclea latifolia root bark in rats and mice. J. Ethnopharmacol. 97, 53-57. https://doi.org/10.1016/j.jep.2004.10.003
  3. Bigler, E. D. (1977) Comparison of effects of bicuculline, strychnine, and picrotoxin with those of pentylenetetrazol on photically evoked afterdischarges. Epilepsia 18, 465-470. https://doi.org/10.1111/j.1528-1157.1977.tb04993.x
  4. Birdsall, T. C. (1998) Therapeutic application of taurine. Altern. Med. Rev. 3, 128-136.
  5. Chen, S. W., Kong, W. X., Zhang, Y. J., Li, Y. L., Mi, X. J. and Mu, X. S. (2004) Possible anxiolytic effects of taurine in the mouse elevated plus maze. Life Sci. 75, 1503-1511. https://doi.org/10.1016/j.lfs.2004.03.010
  6. Chung, M. C., Malatesta, P., Bosquesi, P. L., Yamasaki, P. R., dos Santos, J. L. and Vizioli, E. O. (2012) advances in drug design based on the amino acid approach: taurine analogues for the treatment of CNS diseases. Pharmaceuticals 5, 1128-1146. https://doi.org/10.3390/ph5101128
  7. Costa, E., Guidotti, A. and Mao, C. C. (1975a) New concepts in the mechanism of action of benzodiazepines. Life Sci. 17, 167-186. https://doi.org/10.1016/0024-3205(75)90501-9
  8. Costa, E., Guidotti, A. and Mao, C. C. (1975b) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. Adv. Biochem. Psychopharmacol. (14), 113-130.
  9. Dunn, R. and Fielding, S. (1987) Yohimbine-induced seizures in mice. A model predictive of potential anxiolytic and GABA-mimetic agents. Drug Dev. Res. 10, 177-188. https://doi.org/10.1002/ddr.430100306
  10. Eichler, S. A., Kirischuk, S., Juttner, R., Schafermeier, P. K., Legendre, P., Lehman, T. N., Gloveli, T., Grantyn, R. and Meier, J. C. (2008) Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J. Cell. Mol. Med. 12, 2848-2866. https://doi.org/10.1111/j.1582-4934.2008.00357.x
  11. Ericson, M., Molander, A., Stomberg, R. and Soderpalm, B. (2006) Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine. Eur. J. Neurosci. 23, 3225-3229. https://doi.org/10.1111/j.1460-9568.2006.04868.x
  12. Fontana, B. D., Meinerz, D. L., Rosa, L. V. C., Mezzomo, N. J. and Silveira, A. (2016) Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol. Biochem. Behav. 141, 18-27. https://doi.org/10.1016/j.pbb.2015.11.011
  13. Fontana, B. D., Ziani, P. R., Canzian, J., Mezzomo, N. J., Muller, T. E., dos Santos, M. M., Loro, V. L., Barbosa, N. V., Mello, C. F. and Rosemberg, D. B. (2019) Taurine protects from pentylenetetrazole-induced behavioral and neurochemical changes in zebrafish. Mol. Neurobiol. 56, 583-594. https://doi.org/10.1007/s12035-018-1107-8
  14. Graham, D., Pfeiffer, F. and Betz, H. (1982) Avermectin B1a inhibits the binding of strychnine to the glycine receptor of rat spinal cord. Neurosci. Lett. 29, 173-176. https://doi.org/10.1016/0304-3940(82)90349-4
  15. Harvey, R. J., Depner, U. B., Wassle, H., Ahmadi, S., Heindl, C., Reinold, H., Smart, T. G., Harvey, K., Schutz, B., Abo-Salem, O. M., Zimmer, A., Poisbeau, P., Welzl, H., Wolfer, D. P., Betz, H., Zeilhofer, H. U. and Muller, U. (2004) GlyR ${\alpha}3$: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884-887. https://doi.org/10.1126/science.1094925
  16. Huxtable, R. J. (1986) The Biochemistry of Sulfur. Plenum Press, New York.
  17. Huxtable, R. J. and Barbeau, A. (1976) Taurine. Raven Press, New York.
  18. Huxtable, R. (1992) Physiological actions of taurine. Physiol. Rev. 72, 101-163. https://doi.org/10.1152/physrev.1992.72.1.101
  19. Kamei, N. and Takeda-Morishita, M. (2015) Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control. Release 197,105-110. https://doi.org/10.1016/j.jconrel.2014.11.004
  20. Komatsu, H., Furuya, Y., Sawada, K. and Asada, T. (2015) Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups. Eur. J. Pharmacol. 746, 252-257. https://doi.org/10.1016/j.ejphar.2014.11.024
  21. Kong, W. X., Chen, S. W., Li, Y. L., Zhang, Y. J., Wang, R., Min, L. and Mi, X. (2006) Effects of taurine on rat behaviors in three anxiety models. Pharmacol. Biochem. Behav. 83, 271-276. https://doi.org/10.1016/j.pbb.2006.02.007
  22. Kozlovskaya, L., Abou-Kaoud, M. and Stepensky, D. (2014) Quantitative analysis of drug delivery to the brain via nasal route. J. Control. Release 189, 133-140. https://doi.org/10.1016/j.jconrel.2014.06.053
  23. Kuriyama, K. (1980) Taurine as a neuromodulator. Fed. Proc. 39, 2680-2684.
  24. Legendre, P., Forstera, B., Juttner, R. and Meier, J. C. (2009) Glycine receptors caught between genome and proteome - functional implications of RNA editing and splicing. Front. Mol. Neurosci. 2, 23. https://doi.org/10.3389/neuro.02.023.2009
  25. Leite, J. and Cascio, M. (2001) Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology. Mol. Cell. Neurosci. 17, 777-792. https://doi.org/10.1006/mcne.2001.0984
  26. Lin, C. T., Su, Y. Y. T., Song, G. X. and Wu, J. Y. (1983) Is taurine a neurotransmitter in rabbit retina. Brain Res. 337, 293-298. https://doi.org/10.1016/0006-8993(85)90066-6
  27. Lochhead, J. J. and Thorne, R. G. (2015) Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 64, 614-628. https://doi.org/10.1016/j.addr.2011.11.002
  28. Lynch, J. W. (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051-1095. https://doi.org/10.1152/physrev.00042.2003
  29. Manzke, T., Niebert, M., Koch, U. R., Caley, A., Vogelsesang, S., Hulsmann, S., Ponimaskin, E., Muller, U., Smart, T. G., Harvey, R. J. and Richter, D. W. (2010) Serotonin receptor 1A-modulated phosphorylation of glycine receptor ${\alpha}3$ controls breathing in mice. J. Clin. Invest. 120, 4118-4128. https://doi.org/10.1172/JCI43029
  30. McCool, B. A. and Botting, S. K. (2000) Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neuron. Brain Res. 859, 341-351. https://doi.org/10.1016/S0006-8993(00)02026-6
  31. McCool, B. A. and Chappell, A. (2007) Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is 'state' dependent. Brain Res. 178, 70-81.
  32. Meredith, M. E., Salameh, T. S. and Banks, W. A. (2015) intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 17, 780-787. https://doi.org/10.1208/s12248-015-9719-7
  33. Mezzomoa, N. J., Silveira, A., Giuliania, G. S., Quadrosa, V. A. and Rosemberga, D. B. (2016) The role of taurine on anxiety-like behaviors in zebrafish: A comparative study using the novel tank and the light-dark tasks. Neurosci. Lett. 613, 19-24. https://doi.org/10.1016/j.neulet.2015.12.037
  34. Mohamed, A. F., Matsumoto, K., Tabata, K., Takayama, H., Kitajima, M., Aimi, N. and Watamabe, H. (2000) Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice elucidation using the passive avoidance test. J. Pharm. Pharmacol. 52, 1553-1561. https://doi.org/10.1211/0022357001777612
  35. Moran, J., Solazar, P. and Pasantes-Morales, H. (1988) Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp. Eye Res. 45, 769-776. https://doi.org/10.1016/S0014-4835(87)80094-5
  36. Mansur, J., Martz, R. M. W. and Carlini, E. A. (1971) Effects of acute and chronic administration of Cannabis sativa and (-) 9-trans tetrahedron cannabinol on the behaviour of rats in an open field arena. Psychopharmacology 19, 338-397.
  37. Marks, D. R., Tucker, K., Cavallin, M. A., Mast, T. G. and Fadool, D. A. (2009) Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J. Neurosci. 29, 6734-6751. https://doi.org/10.1523/JNEUROSCI.1350-09.2009
  38. Ozturk, Y., Aydine, S., Ben, R., Baser, K. H. C. and Berberoglu, H. (1996) Behavioural effects of Hypericum perforatum L and Hypericum calycinum L. extracts on the central nervous systems in mice. Phytomedicine 3, 139-146. https://doi.org/10.1016/S0944-7113(96)80027-4
  39. Park, C. R., Seeley, R. J., Craft, S. and Wood, S. C. (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav. 68, 509-514. https://doi.org/10.1016/S0031-9384(99)00220-6
  40. Pellow, S., Chopin, P. H., File, S. E. and Briley, M. (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167. https://doi.org/10.1016/0165-0270(85)90031-7
  41. Reinold, H., Ahmadi, S., Depner, U. B., Layh, B., Heindl, C., Hamza, M., Pahl, A., Brune, K., Narumiya, S., Muller, U. and Zeilhofer, H. U. (2005) Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J. Clin. Invest. 115, 673-679. https://doi.org/10.1172/JCI23618
  42. Rosemberg, D. B., Braga, M. M., Rico, E. P., Loss, C. M., Cordova, S. D., Mussulini, B. H. M., Blaser, R. E., Leite, C. E., Campos, M. M., Dias, R. D., Calcagnotto, M. E., de Oliveira, D. L. and Souza, D. O. (2012) Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol. Neuropharmacology 63, 613-623. https://doi.org/10.1016/j.neuropharm.2012.05.009
  43. Sergeeva, O. A. and Haas, H. L. (2001) Expression and function of glycine receptor in striatal cholinergic interneurons from rat and mouse. Neuroscience 104, 1043-1055. https://doi.org/10.1016/S0306-4522(01)00130-0
  44. Sturman, J. A. (1993) Taurine in development. J. Physiol. Rev. 73, 119-147. https://doi.org/10.1152/physrev.1993.73.1.119
  45. Tsuda, M., Suzuki, T., Misawa, M. and Nagase, H. (1996) Involvement of the opioid in the anxiolytic effect of diazepam in mice. Eur. J. Pharmacol. 307, 7-14. https://doi.org/10.1016/0014-2999(96)00219-1
  46. Usunoff, G., Atsev, E. and Tchavdarov, D. (1969) On the mechanism of picrotoxin epileptic seizure (macro- and microelectrode investigations). Electroencephalogr. Clin. Neurophysiol. 27, 444-447. https://doi.org/10.1016/0013-4694(69)91459-X
  47. Votava, M., Hess, L., Sliva, J., Krsiak, M. and Agova, V. (2005) Dexmedetomidine selectively suppresses dominant behavior in aggressive and sociable mice. Eur. J. Pharmacol. 523, 79-85. https://doi.org/10.1016/j.ejphar.2005.08.022
  48. Yevenes, G. E. and Zeilhofer, H. U. (2011) Allosteric modulation of glycine receptors. Br. J. Pharmacol. 164, 224-36. https://doi.org/10.1111/j.1476-5381.2011.01471.x
  49. Zhang, C. G. and Kim, S. J. (2007) Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo. Ann. Nutr. Metab. 51, 379-386. https://doi.org/10.1159/000107687