References
- Ahmad, R. M., Justin, T. A. and Manivasagam, T. (2018a) Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer's disease. Front. Biosci. (Schol. Ed.) 10, 262-275. https://doi.org/10.2741/s514
- Ahmad, R. M., Justin, T. A., Manivasagam, T., Nataraj, J., Essa, M. M. and Chidambaram, S. B. (2018b) Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer's disease. Front. Biosci. (Elite Ed.) 10, 287-299.
- Al-Ayadhi, L. Y. (2004) Oxidative stress and neurodegenerative disease. Neurosciences (Riyadh) 9, 19-23.
- Chao, P. C., Lee, H. L. and Yin, M. C. (2016) Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice. Food Funct. 7, 1999-2005. https://doi.org/10.1039/C6FO00041J
- Chiba, K., Trevor, A. and Castagnoli, N., Jr. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120, 574-578. https://doi.org/10.1016/0006-291X(84)91293-2
-
Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L. and de Bernard, M. (2013) Triggering of inflammasome by aggregated
${\alpha}$ -synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375. https://doi.org/10.1371/journal.pone.0055375 - Damier, P., Hirsch, E. C., Agid, Y. and Graybiel, A. M. (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122, 1437-1448. https://doi.org/10.1093/brain/122.8.1437
- Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
- Di Monte, M., Sandy, M. S., Ekstrom, G. and Smith, M. T. (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem. Biophys. Res. Commun. 137, 303-309. https://doi.org/10.1016/0006-291X(86)91210-6
- Ellis, J. M. and Fell, M. J. (2017) Current approaches to the treatment of Parkinson's Disease. Bioorg. Med. Chem. Lett. 27, 4247-4255. https://doi.org/10.1016/j.bmcl.2017.07.075
- Fan, Z., Lu, M., Qiao, C., Zhou, Y., Ding, J. H. and Hu, G. (2015) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/caspase-1 axis in adult neural stem cells. Mol. Neurobiol. 53, 7057-7069.
- Guo, W., Liu, W., Jin, B., Geng, J., Li, J., Ding, H., Wu, X., Xu, Q., Sun, Y. and Gao, J. (2015) Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation. Int. Immunopharmacol. 24, 232-238. https://doi.org/10.1016/j.intimp.2014.12.009
- Heid, M. E., Keyel, P. A., Kamga, C., Shiva, S., Watkins, S. C. and Salter, R. D. (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230-5238. https://doi.org/10.4049/jimmunol.1301490
- Hirsch, E., Graybiel, A. M. and Agid, Y. A. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345-348. https://doi.org/10.1038/334345a0
- Hirsch, E. C., Hunot, S. and Hartmann, A. (2005) Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat. Disord. 11, S9-S15. https://doi.org/10.1016/j.parkreldis.2004.10.013
- Jew, S. S., Yoo, C. H., Lim, D. Y., Kim, H., Mook-Jung, I., Jung, M. W., Choi, H., Jung, Y. H., Kim, H. and Park, H. G. (2010) Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg. Med. Chem. Lett. 10, 119-121. https://doi.org/10.1016/S0960-894X(99)00658-7
- Kalia, L. V. and Lang, A. E. (2015) Parkinson's disease. Lancet 386, 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
- Kehrer, J. P. and Smith, C. V. (1994) Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases. In Natural Antioxidants in Human Health & Disease, pp. 25-62.
- Lambert, C. E. and Bondy, S. C. (1989) Effects of MPTP, MPP+ and paraquat on mitochondrial potential and oxidative stress. Life Sci. 44, 1277-1284. https://doi.org/10.1016/0024-3205(89)90365-2
- Latz, E. (2010) The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28-33. https://doi.org/10.1016/j.coi.2009.12.004
- Lee, M. K., Kim, S. R., Sung, S. H., Lim, D., Kim, H., Choi, H., Park, H. K., Je, S. and Ki, Y. C. (2000) Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res. Commun. Mol. Pathol. Pharmacol. 108, 75-86.
- Liu, S. B., Mi, W. L. and Wang, Y. Q. (2013) Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci. Bull. 29, 779-787. https://doi.org/10.1007/s12264-013-1328-9
- Lu, Y., Liu, S., Wang, Y., Wang, D., Gao, J. and Zhu, L. (2016) Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces hepg2 cells death. Eur. J. Pharmacol. 786, 212-223. https://doi.org/10.1016/j.ejphar.2016.06.010
- Mook-Jung, I., Shin, J. E., Yun, S. H., Huh, K., Koh, J. Y., Park, H. K., Jew, S. S. and Jung, M. W. (2015) Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J. Neurosci. Res. 58, 417-425. https://doi.org/10.1002/(SICI)1097-4547(19991101)58:3<417::AID-JNR7>3.0.CO;2-G
- Moore, D. J., West, A. B., Dawson, V. L. and Dawson, T. M. (2004) Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57-87. https://doi.org/10.1146/annurev.neuro.28.061604.135718
- Nataraj, J., Manivasagam, T., Thenmozhi, A. J. and Essa, M. M. (2017) Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci. 20, 351-359. https://doi.org/10.1080/1028415X.2015.1135559
- Niizuma, K., Endo, H. and Chan, P. H. (2010) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J. Neurochem. 109 Suppl 1, 133-138. https://doi.org/10.1111/j.1471-4159.2009.05897.x
- Qiao, C., Zhang, L. X., Sun, X. Y., Ding, J. H., Lu, M. and Hu, G. (2016) Caspase-1 deficiency alleviates dopaminergic neuronal death via inhibiting caspase-7/AIF pathway in MPTP/p mouse model of parkinson's disease. Mol. Neurobiol. 54, 4292-4302.
- Rose, J., Brian, C., Woods, J., Pappa, A., Panayiotidis, M. I., Powers, R. and Franco, R. (2017) Mitochondrial Dysfunction in Glial Cells: Implications for Neuronal Homeostasis and Survival. Toxicology 391, 109-115. https://doi.org/10.1016/j.tox.2017.06.011
- Sarkar, S., Malovic, E., Harishchandra, D. S., Ghaisas, S., Panicker, N., Charli, A., Palanisamy, B. N., Rokad, D., Jin, H., Anantharam, V., Kanthasamy, A. and Kanthasamy, A. G. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. NPJ Parkinsons Dis. 3, 30. https://doi.org/10.1038/s41531-017-0032-2
- Schapira, A. H. (1999) Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410, 159-170. https://doi.org/10.1016/S0005-2728(98)00164-9
- Schroder, K. and Tschopp, J. (2010) The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
- Shetty, B. S., Udupa, S. L., Udupa, A. L. and Somayaji, S. N. (2006) Effect of Centella asiatica L (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. Int. J. Low. Extrem. Wounds 5, 137-143. https://doi.org/10.1177/1534734606291313
- Singer, T. P. and Ramsay, R. R. (1990) Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 274, 1-8. https://doi.org/10.1016/0014-5793(90)81315-F
- Sun, J., Ren, D. D., Wan, J. Y., Chen, C., Chen, D., Yang, H., Feng, C. L. and Gao, J. (2017) Desensitizing mitochondrial permeability transition by erk-cyclophilin d axis contributes to the neuroprotective effect of gallic acid against cerebral ischemia/reperfusion injury. Front. Pharmacol. 8, 184.
- Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. https://doi.org/10.1038/17135
- Tang, L. X., He, R. H., Yang, G., Tan, J. J., Zhou, L., Meng, X. M., Huang, X. R. and Lan, H. Y. (2012) Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS ONE 7, e31350. https://doi.org/10.1371/journal.pone.0031350
- Wang, X., Gao, Y., Song, J., Tang, C., Wang, M. and Que, L., Liu, L., Zhu, G., Chen, Q., Yao, Y., Xu, Y., Li, J. and Li, Y. (2017) The TIR/BB-loop mimetic AS-1 prevents non-alcoholic steatohepatitis and hepatic insulin resistance by inhibiting NLRP3-ASC inflammasome activation. Br. J. Pharmacol. 174, 1841-1856. https://doi.org/10.1111/bph.13786
- Whitton, P. S. (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Phamacol. 150, 963-976. https://doi.org/10.1038/sj.bjp.0707167
- Wu, T., Geng, J., Guo, W., Gao, J. and Zhu, X. (2017) Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B 7, 65-72. https://doi.org/10.1016/j.apsb.2016.04.003
- Xiong, Y., Ding, H., Xu, M. and Gao, J. (2009) Protective Effects of Asiatic Acid on Rotenone- or H2O2-Induced Injury in SH-SY5Y Cells. Neurochem. Res. 34, 746-754. https://doi.org/10.1007/s11064-008-9844-0
- Xu, M. F., Xiong, Y. Y., Liu, J. K., Qian, J. J., Zhu, L. and Gao, J. (2012) Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol. Sin. 33, 578-587. https://doi.org/10.1038/aps.2012.3
-
Xu, W., Zhao, Y., Zhang, B., Xu, B., Yang, Y., Wang, Y. and Liu, C. (2015) Resveratrol attenuates hyperoxia-induced oxidative stress, inflammation and fibrosis and suppresses Wnt/
${\beta}$ -catenin signalling in lungs of neonatal rats. Clin. Exp. Pharmacol. Physiol. 42, 1075-1083. https://doi.org/10.1111/1440-1681.12459 - Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z. and Zhou, R. (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73. https://doi.org/10.1016/j.cell.2014.11.047
- Zhang, X., Wu, J., Dou, Y., Xia, B., Rong, W., Rimbach, G. and Lou, Y. (2012) Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur. J. Pharmacol. 679, 51-59. https://doi.org/10.1016/j.ejphar.2012.01.006
- Zhou, Y., Lu, M., Du, R., Qiao, C., Jiang, C., Zhang, K., Ding, J. and Hu, G. (2016) MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol. Neurodegener. 11, 28. https://doi.org/10.1186/s13024-016-0094-3
Cited by
- Screening of the Hepatotoxic Components in Fructus Gardeniae and Their Effects on Rat Liver BRL-3A Cells vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213920
- Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex vol.12, pp.2, 2020, https://doi.org/10.3390/nu12020355
- Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson’s Disease: Current Knowledge and Future Perspectives vol.2021, 2019, https://doi.org/10.1155/2021/6680935
- In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234071
- LncRNA RMST Regulates Neuronal Apoptosis and Inflammatory Response via Sponging miR-150-5p in Parkinson’s Disease vol.29, pp.1, 2019, https://doi.org/10.1159/000518212