DOI QR코드

DOI QR Code

Factors Influencing the Use-diffusion of Smart Speakers

스마트 스피커의 사용-확산 관련 영향 요인 -중국소비자를 중심으로

  • Park, Hyun Jung (Dept. of International Business, Chungbuk National University) ;
  • Chen, Qian Qian (Dept. of International Business, Chungbuk National University)
  • 박현정 (충북대학교 국제경영학과) ;
  • 진천천 (충북대학교 국제경영학과)
  • Received : 2019.05.24
  • Accepted : 2019.08.20
  • Published : 2019.08.28

Abstract

This study analyzed the impact of various factors on the use-diffusion of smart speakers. 300 survey responses of Chinese consumers were analyzed using structured models. The results show that both autonomy and adaptability had significant impacts on perceived usefulness and perceived easy of use. Multifunctionality and ability to cooperate affected perceived usefulness, while reactivity did not affected perceived usefulness or perceived easy of use. Anthropomorphism increased perceived enjoyment. Both perceived usefulness and perceived easy of use have been identified to improve the use-diffusion of smart speakers. Perceived enjoyment enhanced the variety of use. We expect these results help understand the factors that need to be considered for the design or marketing communication of smart products.

본 연구는 스마트 스피커의 사용-확산을 결정할 수 있는 다양한 요인을 제안하고 이러한 요인들이 소비자 사용-확산에 미치는 영향을 분석하고자 하였다. 스마트 스피커를 사용해 본 경험이 있는 중국 소비자 262명의 설문조사 데이터를 수집하여 구조방정식 모형을 이용하여 분석하였다. 연구결과 스마트 스피커의 자동성과 적응성 모두 지각된 유용성과 지각된 용이성에 유의한 영향을 미치는 것으로 나타났다. 다기능성과 호환성은 지각된 유용성에 영향을 미치는 반면 반응성은 지각된 유용성과 지각된 용이성에 영향을 미치지 않았다. 의인화는 지각된 유희성에 영향을 미치는 것으로 나타났다. 지각된 유용성과 지각된 용이성은 모두 사용 다양성과 사용량을 향상시키고 지각된 유희성은 사용 다양성에 영향을 주었다. 본 연구는 이러한 결과들을 통하여 스마트 제품의 디자인 및 마케팅 커뮤니케이션을 위하여 소비자들에 대해 고려해야 하는 요소들을 이해하는데 도움을 줄 것으로 기대한다.

Keywords

References

  1. X. T. Xiao & S. I. Kim. (2018). A Study on the User Experience of Smart Speaker in China-Focused on Tmall Genie and Mi AI Speaker. Journal of Digital Convergence, 16(10), 409-414. https://doi.org/10.14400/JDC.2018.16.10.409
  2. H. J. Lee, C. H. Cho, S. Y. Lee & Y. H. Keel. (2019). A Study on Consumers' Perception of and Use Motivation of Artificial Intelligence(AI) Speaker. Journal of the Korea Contents Association, 19(3), 138-154. https://doi.org/10.5392/JKCA.2019.19.03.138
  3. M. J. Kwon & J. M. Kim. (2018). An Analysis of Users Attitudes and Satisfaction toward the Motivation of Artificial Intelligence Speaker -Based on the Theory of Diffusion of Innovations-. Journal of Communication Design, 65, 474-483.
  4. S. A. Rijsdijk & E. J. Hultink. (2009). How today's consumers perceive tomorrow's smart products. Journal of Product Innovation Management, 26(1), 24-42. https://doi.org/10.1111/j.1540-5885.2009.00332.x
  5. Q. Q. Chen & H. J. Park. (2018). Consumer study on the acceptance of VR headsets based on the extended TAM. Journal of Digital Convergence, 16(6), 117-126. https://doi.org/10.14400/JDC.2018.16.6.117
  6. S. D. Cho & K. E. Kim. (2007). A study on the factors influencing the use diffusion of technological products. Korean Journal of Marketing, 22(2), 67-86.
  7. J. H. You & C. Park. (2010). A comprehensive review of technology acceptance model researches. Entrue Journal of Information Technology, 9(2), 31-50.
  8. S. S. Kim, W. J. Jang & G. Y. Gim. (2019). An Exploratory Study on Factors Affecting Intention to Use of AI Speaker. The Journal of Information Technology and Architecture, 16(1), 71-86. https://doi.org/10.22865/JITA.2019.16.1.71
  9. H. J. Park & H. S. Lee. (2014). Product smartness and use-diffusion of smart products: the mediating roles of consumption values. Asian Social Science, 10(3), 54.
  10. J. Bohn, V. Coroama, M. Langheinrich, F. Mattern & M. Rohs. (2004). Living in a world of smart everyday objects-social, economic, and ethical implications. Human and Ecological Risk Assessment, 10(5), 763-785. https://doi.org/10.1080/10807030490513793
  11. N. Epley, A. Waytz & J. T. Cacioppo. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychological Review, 114(4), 864. https://doi.org/10.1037/0033-295X.114.4.864
  12. S. A. Park & S. J. Choi. (2018). A understanding the factors influencing satisfaaction and continued use intention of AI speaker; focusing on the utilitarian and hedonic values. Information Society & Media, 19(3), 159-182. https://doi.org/10.52558/ISM.2018.12.19.3.159
  13. S. A. Brown & V. Venkatesh. (2005). A model of adoption of technology in the household: A baseline model test and extension incorporating household life cycle. Management Information Systems Quarterly, 29(3), 11.
  14. N. Lee, H. Shin & S. S. Sundar. (2011, March). Utilitarian vs. hedonic robots: role of parasocial tendency and anthropomorphism in shaping user attitudes. In Proceedings of the 6th International Conference on Human-robot Interaction (pp. 183-184). ACM.
  15. P. A. Rauschnabel & A. C. Ahuvia. (2014). You're so lovable: Anthropomorphism and brand love. Journal of Brand Management, 21(5), 372-395. https://doi.org/10.1057/bm.2014.14
  16. V. Venkatesh, J. Y. Thong & X. Xu. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  17. Y. Sung & J. Kim. (2010). Effects of brand personality on brand trust and brand affect. Psychology & Marketing, 27(7), 639-661. https://doi.org/10.1002/mar.20349
  18. C. Klimmt, T. Hartmann & A. Frey. (2007). Effectance and control as determinants of video game enjoyment. Cyberpsychology & Behavior, 10(6), 845-848. https://doi.org/10.1089/cpb.2007.9942
  19. H. J. Park. (2015).Nscreen service user typology based on use-diffusion and lifestyle. Journal of the Korea Contents Association, 15(2), 444-454. https://doi.org/10.5392/JKCA.2015.15.02.444
  20. C. F. Shih & A. Venkatesh. (2004). Beyond adoption: Development and application of a use-diffusion model. Journal of Marketing, 68(1), 59-72. https://doi.org/10.1509/jmkg.68.1.59.24029
  21. K. H. Yim, J. H. Kwon & Z. X. Quan. (2016). The effect of benefits of mobile application use-diffusion and purchase intention in service management. Journal of Digital Convergence, 14(3), 63-69. https://doi.org/10.14400/JDC.2016.14.3.63
  22. D. H. Jo, J. W. Park & H. J. Chun. (2011). The relationships among perceived value, use-diffusion, loyalty of mobile instant messaging service. Journal of Intelligence and Information Systems, 17(4), 193-212. https://doi.org/10.13088/JIIS.2011.17.4.193
  23. S. Moussawi. (2016). Investigating personal intelligent agents in everyday life through a behavioral lens. City University of New York.
  24. J. W. Moon & Y. G. Kim. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6