DOI QR코드

DOI QR Code

개인화된 소프트웨어 교육을 위한 콘텐츠 추천 기법

Content Recommendation Techniques for Personalized Software Education

  • 김완섭 (숭실대학교 베어드교양대학)
  • 투고 : 2019.07.02
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

최근 소프트웨어 교육이 4차 산업혁명의 핵심요소로 강조되고 있으며, 이러한 시대적 요구에 따라 많은 대학들이 전교생을 대상으로 하는 소프트웨어 교육을 강화하고 있다. 전교생을 대상으로 하는 SW교육 도입을 위해 온라인 콘텐츠의 활용은 효과적인 방안이라고 할 수 있다. 그러나 일률적인 온라인 콘텐츠의 제공은 학생들의 개별적인 특성(전공, 흥미, 이해력, 관심분야 등)을 고려하지 못하는 한계를 갖는다. 본 연구에서는 불리언 형태의 시청이력 데이터 환경에서 콘텐츠 간의 방향성 있는 유사도를 활용하는 추천 기법을 제안한다. 연관규칙 분석의 확신도를 유사도 값으로 활용하는 새로운 아이템기반 추천 수식을 제안하여 국내의 실제 유료 콘텐츠 사이트의 데이터에 적용하였다. 실험 결과 코사인, 자카드 등의 전통적인 유사도 방식을 기반으로 하는 협력적 추천방식을 사용할 때 보다 추천 정확도가 향상됨을 확인할 수 있었다.

Recently, software education has been emphasized as a key element of the fourth industrial revolution. Many universities are strengthening the software education for all students according to the needs of the times. The use of online content is an effective way to introduce SW education for all students. However, the provision of uniform online contents has limitations in that it does not consider individual characteristics(major, sw interest, comprehension, interests, etc.) of students. In this study, we propose a recommendation method that utilizes the directional similarity between contents in the boolean view history data environment. We propose a new item-based recommendation formula that uses the confidence value of association rule analysis as the similarity level and apply it to the data of domestic paid contents site. Experimental results show that the recommendation accuracy is improved than when using the traditional collaborative recommendation using cosine or jaccard for similarity measurements.

키워드

참고문헌

  1. G. J. Park & Y. J. Choi. (2018). Exploratory study on the direction of software education for the non-major undergraduate students. Journal of Education & Culture, 24(4), 273-292. DOI : 10.24159/joec.2018.24.4.273
  2. K. M. Lee. (2019). Computational Thinking Education Teaching Method Research for Non-Major Subjects. Korean Journal of General Education, 13(1), 321-343.
  3. J. E. Nah. (2017). Software Education Needs Analysis in Liberal Arts. Korean Journal of General Education, 11(3), 63-89.
  4. W. S. Kim. (2017). A Study on establishing software essential courses for non-specialists. The Korean Association of General Education Conference, 110-115.
  5. K. M. Kim, H. S. Kim. (2017). A Study on Customized Software Education method using Flipped Learning in the Digital Age. Journal of Digital Convergence, 15(7), 55-64. DOI : 10.14400/JDC.2017.15.7.55
  6. Y. J. Ahn. (2015). A Study on The Improvement of Computer Programming Ability for The Learners Participated in Custom Learning Programs. The Korean Society Of Computer And Information Conference, 23(1), 295-296.
  7. S. H. Kim, S. M. Lim & S. S. Song. (2015). Analysis about User Log for Development of Online SW Education Platform in Korea. The Korean Association Of Computer Education Symposium, 63-67.
  8. Wing M. Jeannette. (2006). Computational Thinking, Communications of the ACM, 49(3), 33-35. DOI : 10.1145/1118178.1118215
  9. S. H. Kim, B. H. Oh, M. J. Kim & J. H. Yang. (2012). A Movie Recommendation Algorithm Combining Collaborative Filtering and Content Information. Journal of KISS : Software and Applications, 39(4), 261-268.
  10. S. J. Lee(2018). A New Similarity Measure using Fuzzy Logic for User-based Collaborative Filtering. The Journal of Korean Association of Computer Education, 21(5), 61-68. DOI : 10.32431/kace.2018.21.5.006
  11. Y. S. Kim. (2012). Research Trend of Recommendation System for Personalization Service. ie Magazine, 19(1), 37-42.
  12. B. C. Kim & S. Y. Lee. (2018). Used Textbook Trading Platform to Recommend University Textbooks. Journal of Digital Convergence, 16(4), 329-334. DOI : 10.14400/JDC.2018.16.4.329
  13. S. H. Han, Y. H. Oh & H. J. Kim. (2013). Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering. JOURNAL OF BROADCAST ENGINEERING, 18(1), 88-97. DOI : 10.5909/JBE.2013.18.1.88
  14. D. K. Kim. (2017). Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform. The Korean Biblia Society For Library And Information Science, 28(4), 501-518. DOI : 10.14699/kbiblia.2017.28.4.501
  15. H. J. Han, Y. S. Choi & S. P. Choi. (2018). A Study on Personalization of Science and Technology Information by User Interest Tracking Technique. JOURNAL OF THE KOREAN SOCIETY FOR LIBRARY AND INFORMATION SCIENCE, 52(3), 5-33. DOI : 10.4275/KSLIS.2018.52.3.005
  16. E. M. Sung, Y. J. Chae & S. H. Lee. (2018). Analysis of Types and Characteristics of Self-Directed Learning of Learners in Online Software Education. The Journal of Korean Association of Computer Education, 22(1), 31-46. DOI : 10.32431/kace.2019.22.1.004
  17. Suresh K. Gorakala & Michele Usuelli. (2015). Building a Recommendation System with R, Acorn Publishing.
  18. S. J. Lee. (2016). Collaborative filtering system examples and issues. A Journal of Education, 36(1), 1-22. DOI : 10.25020/je.2016.36.1.1
  19. Y. Kim. (2012). A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm. The Korean Biblia Society For Library And Information Science, 23(4), 283-308. https://doi.org/10.14699/kbiblia.2012.23.4.283
  20. J. S. Han. (2013). Intelligent Recommendation Processor Simulation using Association Relationship. Journal of Digital Convergence, 11(12), 431-438. DOI : 10.14400/JDPM.2013.11.12.431
  21. S. K. Kim. (2014). A Study of the Personalization Service and Privacy Paradox in the Big Data Era. Journal of the Korean Cadastre Information Association, 16(2), 193-207.
  22. J. W. Han, J. C. Jo & H. S. Lim. (2018). Development of Personalized Learning Course Recommendation Model for ITS. Journal of the Korea Convergence Society, 9(10), 21-28. DOI : 10.15207/JKCS.2018.9.10.021
  23. S. H. Ju, M. Y. Song & B. K. Kim. (2018). The Effect of Personal trait on Perceived Value and Recommendation Intention : Focus on one-person media contents. Journal of the Korea Convergence Society, 9(12), 159-167. DOI : 10.15207/JKCS.2018.9.12.159
  24. S. J. Park, Y. M. Kim & J. J. Ahn. (2019). Development of Product Recommender System using Collaborative Filtering and Stacking Model. Journal of Convergence for Information Technology, 9(6), 83-90. DOI : 10.22156/CS4SMB.2019.9.6.083
  25. J. S. Kang, J. W. Baek & K. Y. Chung. (2019). Multimodal Media Content Classification using Keyword Weighting for Recommendation. Journal of Convergence for Information Technology, 9(5), 1-6. DOI : 10.22156/CS4SMB.2019.9.5.001