DOI QR코드

DOI QR Code

Effect of Pre-Treatment of Alpha-Ga2O3 Grown on Sapphire by Halide Vapor Phase Epitaxy

HVPE 방법으로 성장된 알파-갈륨 옥사이드의 전처리 공정에 따른 특성 변화

  • Choi, Ye-ji (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Son, Hoki (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Ra, Yong-Ho (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Young-Jin (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Sun Woog (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tae-Young (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 최예지 (한국세라믹기술원 광.전자부품소재센터) ;
  • 손호기 (한국세라믹기술원 광.전자부품소재센터) ;
  • 라용호 (한국세라믹기술원 광.전자부품소재센터) ;
  • 이영진 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김진호 (한국세라믹기술원 광.전자부품소재센터) ;
  • 황종희 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김선욱 (한국세라믹기술원 광.전자부품소재센터) ;
  • 임태영 (한국세라믹기술원 광.전자부품소재센터) ;
  • 전대우 (한국세라믹기술원 광.전자부품소재센터)
  • Received : 2019.04.24
  • Accepted : 2019.06.25
  • Published : 2019.09.01

Abstract

In this study, we report the effect of pre-treatment of alpha-$Ga_2O_3$ grown on a sapphire substrate by halide vapor phase epitaxy (HVPE). During the pre-treatment process, 10 sccm of GaCl gas was injected to the sapphire substrate at $470^{\circ}C$. The surface morphologies of the alpha-$Ga_2O_3$ layers grown with various pre-treatment time (3, 5, and 10 min) were flat and crack-free. The transmittance of the alpha-$Ga_2O_3$ epi-layers was measured to analyze their optical properties. The transmittance was over 80% within the range of visible light. The strain in the alpha-$Ga_2O_3$ grown with a pre-treat 5 min was measured, and was found to be close to the theoretical XRD peak position. This can be explained by the reduction of strain having caused a lattice mismatch between the alpha-$Ga_2O_3$ layer and sapphire substrate. The calculated dislocation density of the screw and edge were $2.5{\times}10^5cm^{-2}$ and $8.8{\times}10^9cm^{-2}$, respectively.

Keywords

References

  1. A. T. Neal, S. Mou, R. Lopez, J. V. Li, D. B. Thomson, K. D. Chabak, and G. H. Jessen, Sci. Rep., 7, 13218 (2017). [DOI:https://doi.org/10.1038/s41598-017-13656-x]
  2. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  3. S. Zhang, X. Lian, Y. Ma, W. Liu, Y. Zhang, Y. Xu, and H. Cheng, J. Semicond., 39, 8 (2018). [DOI: https://doi.org/10.1088/1674-4926/39/8/083003]
  4. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, Appl. Phys. Express, 8, 015503 (2015). [DOI: https://doi.org/10.7567/apex.8.015503]
  5. Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI:https://doi.org/10.1063/1.5058059]
  6. J. W. Roberts, J. C. Jarman, D. N. Johnstone, P. A. Midgley, P. R. Chalker, R. A. Oliver, and F.C.P. Massabuau, J. Cryst. Growth, 487, 23 (2018). [DOI: https://doi.org/10.1016/j.jcrysgro.2018.02.014]
  7. T. Oshima, Y. Kato, M. Imura, Y. Nakayama, and M. Takeguchi, Appl. Phys. Express, 11, 065501 (2018). [DOI: https://doi.org/10.7567/apex.11.065501]
  8. D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., 47, 7311 (2008). [DOI: https://doi.org/10.1143/jjap.47.7311]
  9. Y. Oshima, E. G. Villora, and K. Shimamura, Appl. Phys. Express, 8, 055501 (2015). [DOI: https://doi.org/10.7567/apex.8.055501]
  10. V. Gottschalch, S. Merker, S. Blaurock, M. Kneiss, U. Teschner, M. Grundmann, and H. Krautscheid, J. Cryst. Growth, 510, 76 (2019). [DOI: https://doi.org/10.1016/j.jcrysgro.2019.01.018]
  11. Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI:https://doi.org/10.1063/1.5058059]
  12. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys., 51, 020201 (2012). [DOI: https://doi.org/10.7567/jjap.51. 020201]
  13. H. K. Son, Y. J. Choi, Y. H. Ra, J. H. Hwang, Y. J. Lee, M. J. Lee, J. H. Kim, S. W. Kim, T. Y. Lim, and D. W. Jeon, J. Korean Cryst., 28, 135 (2018).
  14. H. K. Son, Y. J. Choi, J. H. Hwang, and D. W. Jeon, Solid State Sci. Technol., 8, Q3024 (2019). [DOI: https://doi.org/10.1149/2.0051907jss]
  15. K. Doverspike, L. B. Rowland, D. K. Gaskill, and J. A. Freitas, J. Electron. Mater., 24, 269 (1995). [DOI: https://doi.org/10.1007/bf02659686]
  16. Y. Ohba and R. Sata, J. Cryst. Growth, 221, 258 (2000). [DOI:https://doi.org/10.1016/s0022-0248(00)00695-3]
  17. H. K. Son and D. W. Jeon, J. Alloys Compd., 773, 631 (2019). [DOI: https://doi.org/10.1016/ j.jallcom.2018.09.230]
  18. S. Rafique, M. R. Karim, J. M. Johnson, J. Hwang, and H. Zhao, Appl. Phys. Lett., 112, 052104 (2018). [DOI: https://doi.org/10.1063/1.5017616]
  19. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, ECS J. Solid State Sci. Technol., 6, Q3040 (2017). [DOI: https://doi.org/10.1149/2.0081702jss]
  20. K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, Appl. Phys. Lett., 111, 012103 (2017). [DOI:https://doi.org/10.1063/1.4991363]
  21. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Mater. Lett., 114, 26 (2014). [DOI:https://doi.org/10.1016/j.matlet.2013.09.096]