초록
In this paper, a single N+ emitter trench gate-type insulated gate bipolar transistor (IGBT) device was studied using T-CAD, in order to achieve a low on-state voltage drop (Vce-sat) and high breakdown voltage, which would reduce power loss and device reliability. Using the simulation, the threshold voltage, breakdown voltage, and on-state voltage drop were studied as a function of the temperature, the length of time in the diffusion process (drive-in) after implant, and the trench gate depth. During the drive-in process, a $20^{\circ}C$ change in temperature from 1,000 to $1,160^{\circ}C$ over a 150 minute time frame resulted in a 1 to 4 V change in the threshold voltage and a 24 to 2.6 V change in the on-state voltage drop. As a result, a 0.5 um change in the trench depth of 3.5 to 7.5 um resulted in the breakdown voltage decreasing from 802 to 692 V.