Fig. 1. Definition of numerical domain
Fig. 2. Grid independence tests
Fig. 3. Comparison of axial evolution of the convective heat transfer coefficient with the corresponding experimental data [21]
Fig. 4. Secondary flow for different axial positions at ϕ=0.05 and Ri=1:(a) z*=5, (b)z*=10, (c)z*=20, (d)z*=40, (e)z*=190
Fig. 5. Secondary flow for different flow conditions at z*=190 :(a) Ri=1, ϕ=0.00, (b) Ri=1, ϕ=0.07, (c) Ri=0.5, ϕ=0.05, (d) Ri=2, ϕ=0.05
Fig. 6. Axial evolution of the Iso-temperature at ϕ=0.05 and Ri=1:(a)z*=10, (b)z*=20,(c)z*=40, (d)z*=190
Fig. 7. Axial variation of the center-point temperature for different ϕ at Ri=1.
Fig. 8. Axial development of the convective heat transfer coefficient for different ϕ at Re=300 and Ri=1.
Fig. 9. Convective heat transfer coefficient for different Ri and ϕ at Re=300 and z*=190
Fig. 10. Axial development of the total wall shear stress for different ϕ at Re=300 and Ri=1
Table 1. Properties of Al2O3
References
- S. U. S. Choi. (1995). Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow, ASME, FED 231/MD, 66, 99-105.
- H. Masuda, A. Ebata, K. Teramae & N. Hishinuma. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions Of -Al2O3, SiO2, and TiO2 Ultra-Fine Particles). Netsu Bussei (Japan), 4, 227-233.
- S. Lee, S. U. S. Choi, S. S. Li & J. A. Eastman, (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transfer, 121, 280-289. https://doi.org/10.1115/1.2825978
- B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer, 11, 151-170. https://doi.org/10.1080/08916159808946559
- Y. M. Xuan & Q. Li. (2003). Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat Transfer, 125, 151-155. https://doi.org/10.1115/1.1532008
- M. K. Moraveji, M. Darabi, S. M. Hossein Haddad & R. Davarnejad. (2011). Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow with Computational Fluid Dynamics. Int. Commun. Heat Mass Transfer, 38, 1291-1295. https://doi.org/10.1016/j.icheatmasstransfer.2011.06.011
- S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy & N. Galanis. (2005). Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows. Int. J. Heat and Fluid Flow, 26(4), 530-546. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
- H. K. Choi & G. J. Yoo. (2014). Numerical study on nanofluids forced convection in circular tubes. J. Comput. Fluids Eng, 19, 37-43
- Y. Mori, K. Futagami, S. Tokuda & M. Nakamura. (1966). Forced convective heat transfer in uniformly heated horizontal tubes, 1st report, Experimental study on the effect of buoyancy. Int. J. Heat Mass Transfer, 9, 453-463. https://doi.org/10.1016/0017-9310(66)90101-3
- K. C. Cheng & F. P. Yuen. (1985). Flow visualization studies on secondary flow pattern for mixed convection in the thermal entrance region of isothermally heated inclined pipes. ASME Heat Transfer Division, 42, 121-130.
- G. S. Barozzi, E. Zanchini & M. Mariotti. (1998). Experimental investigation of combined forced and free convection in horizontal and inclined tubes. Meccanica. 20, 18-27. https://doi.org/10.1007/BF02337057
- C. Zhang. (1992). Mixed convection inside horizontal tubes with nominally uniform heat flux. AIChE Symp. 88, 212-219.
- G. J. Hwang & H. C. Lai. (1994). Laminar convection heat transfer in a horizontal isothermal tube for high numbers. Int. J. Heat Mass Transfer, 37, 1631-1640. https://doi.org/10.1016/0017-9310(94)90178-3
- K. J. Kim. (2018). A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures. Journal of Convergence for Information Technology, 8, 95-100.
- Y. S. Jeong, Y. T Kim & G. C Park. (2016). A Three-dimensional Numerical Weather Model using Power Output Predict of Distributed Power Source. Journal of Convergence for Information Technology, 6, 93-98.
- M. Manninen, V. Taivassalo & S. Kallio. (1996). On the mixture model for multiphase flow. VTT Publications, 288, Technical Research Centre of Finland.
- L. Schiller & Z. Naumann. (1935). A drag coefficient correlation, V.D.I. Zeitung 77, 318.
- 2019, Fluent, ANSYS Fluent V.19 User Guide, USA.
- K. Khanafer & K. Vafai. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4010-4428.
- R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52, 4675-4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
- K. Khanafer, K. Vafai & M. Lightstone. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653. https://doi.org/10.1016/S0017-9310(03)00156-X
- S. A. Zonouzi, H. Aminfar & M. Mohammadpourfard. (2014). 3D Numerical Investigation of Thermal Characteristics of Nanofluid Flow through Helical Tubes Using Two-Phase Mixture Model. International Journal for Computational Methods in Engineering Science and Mechanics, 15, 512-521. https://doi.org/10.1080/15502287.2014.952847
- D. H Kim et al. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9, 119-123. https://doi.org/10.1016/j.cap.2008.12.047