DOI QR코드

DOI QR Code

Numerical Study of Mixed Convection Nanofluid in Horizontal Tube

수평원형관내 나노유체의 혼합대류에 관한 수치적 연구

  • Choi, Hoon-Ki (Dept. of Mechanical Engineering, Changwon National University) ;
  • Lim, Yun-Seung (Dept. of Mechanical Engineering, Changwon National University)
  • 최훈기 (창원대학교 기계공학부) ;
  • 임윤승 (창원대학교 기계공학부 대학원)
  • Received : 2019.07.01
  • Accepted : 2019.08.20
  • Published : 2019.08.28

Abstract

Laminar mixed convection of a nanofluid consists of water and $Al_2O_3$ in a horizontal circular tube has been studied numerically. Two-phase mixture model has been used to investigate hydrodynamic and thermal behaviors of the nanofluid with variables physical properties. Three dimensional Navier-Stokes, energy and volume fraction equations have been discretized using the finite volume method. The Brownian motions of nanoparticles have been considered to determine the thermal conductivity and dynamic viscosity of $Al_2O_3$-Water nanofluid, which depend on temperature. The calculated results show good agreement with the previous numerical data. Results show that in a given Reynolds number (Re), increasing solid nanoparticles volume fraction and Richardson number (Ri) increases the convective heat transfer coefficient and wall shear stress.

수평원형관에서 나노입자인 산화알미늄과 기본유체인 물의 혼합인 나노유체에 대한 층류 혼합대류열전달현상을 유한체적법의 수치적 방법으로 규명하였다. 나노유체에 대하여 2상 혼합모델을 적용하였으며, 나노입자의 물성은 온도와 체적농도의 함수를 사용하였다. 수치해석에 적용한 모든 모델의 타당성 검증을 위하여 Kim등의 실험결과와 비교하였으며 좋은 결과를 얻었다. 벽면을 일정한 열유속으로 가열하므로 나노유체는 벽면부근에서 형성된 부력에 의하여 2차유동이 생성된다. Richardson수와 나노입자의 농도가 증가할수록 강한 2차유동이 형성되어 열전달을 향상시키게 된다. 또한 Richardson수와 나노입자의 농도가 증가하면 대류열전달계수와 전단응력도 증가한다. 이런 연구들은 열교환기의 성능향상을 위하여 나노유체를 적용하는데 기본자료로 활용이 가능하다. 이번 연구를 기반으로 향후 2중관형열교환기등 다양한 열교환기에 적용할 예정이다.

Keywords

JKOHBZ_2019_v9n8_155_f0001.png 이미지

Fig. 1. Definition of numerical domain

JKOHBZ_2019_v9n8_155_f0002.png 이미지

Fig. 2. Grid independence tests

JKOHBZ_2019_v9n8_155_f0003.png 이미지

Fig. 3. Comparison of axial evolution of the convective heat transfer coefficient with the corresponding experimental data [21]

JKOHBZ_2019_v9n8_155_f0004.png 이미지

Fig. 4. Secondary flow for different axial positions at ϕ=0.05 and Ri=1:(a) z*=5, (b)z*=10, (c)z*=20, (d)z*=40, (e)z*=190

JKOHBZ_2019_v9n8_155_f0005.png 이미지

Fig. 5. Secondary flow for different flow conditions at z*=190 :(a) Ri=1, ϕ=0.00, (b) Ri=1, ϕ=0.07, (c) Ri=0.5, ϕ=0.05, (d) Ri=2, ϕ=0.05

JKOHBZ_2019_v9n8_155_f0006.png 이미지

Fig. 6. Axial evolution of the Iso-temperature at ϕ=0.05 and Ri=1:(a)z*=10, (b)z*=20,(c)z*=40, (d)z*=190

JKOHBZ_2019_v9n8_155_f0007.png 이미지

Fig. 7. Axial variation of the center-point temperature for different ϕ at Ri=1.

JKOHBZ_2019_v9n8_155_f0008.png 이미지

Fig. 8. Axial development of the convective heat transfer coefficient for different ϕ at Re=300 and Ri=1.

JKOHBZ_2019_v9n8_155_f0009.png 이미지

Fig. 9. Convective heat transfer coefficient for different Ri and ϕ at Re=300 and z*=190

JKOHBZ_2019_v9n8_155_f0010.png 이미지

Fig. 10. Axial development of the total wall shear stress for different ϕ at Re=300 and Ri=1

Table 1. Properties of Al2O3

JKOHBZ_2019_v9n8_155_t0001.png 이미지

References

  1. S. U. S. Choi. (1995). Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow, ASME, FED 231/MD, 66, 99-105.
  2. H. Masuda, A. Ebata, K. Teramae & N. Hishinuma. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions Of -Al2O3, SiO2, and TiO2 Ultra-Fine Particles). Netsu Bussei (Japan), 4, 227-233.
  3. S. Lee, S. U. S. Choi, S. S. Li & J. A. Eastman, (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transfer, 121, 280-289. https://doi.org/10.1115/1.2825978
  4. B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer, 11, 151-170. https://doi.org/10.1080/08916159808946559
  5. Y. M. Xuan & Q. Li. (2003). Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat Transfer, 125, 151-155. https://doi.org/10.1115/1.1532008
  6. M. K. Moraveji, M. Darabi, S. M. Hossein Haddad & R. Davarnejad. (2011). Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow with Computational Fluid Dynamics. Int. Commun. Heat Mass Transfer, 38, 1291-1295. https://doi.org/10.1016/j.icheatmasstransfer.2011.06.011
  7. S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy & N. Galanis. (2005). Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows. Int. J. Heat and Fluid Flow, 26(4), 530-546. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
  8. H. K. Choi & G. J. Yoo. (2014). Numerical study on nanofluids forced convection in circular tubes. J. Comput. Fluids Eng, 19, 37-43
  9. Y. Mori, K. Futagami, S. Tokuda & M. Nakamura. (1966). Forced convective heat transfer in uniformly heated horizontal tubes, 1st report, Experimental study on the effect of buoyancy. Int. J. Heat Mass Transfer, 9, 453-463. https://doi.org/10.1016/0017-9310(66)90101-3
  10. K. C. Cheng & F. P. Yuen. (1985). Flow visualization studies on secondary flow pattern for mixed convection in the thermal entrance region of isothermally heated inclined pipes. ASME Heat Transfer Division, 42, 121-130.
  11. G. S. Barozzi, E. Zanchini & M. Mariotti. (1998). Experimental investigation of combined forced and free convection in horizontal and inclined tubes. Meccanica. 20, 18-27. https://doi.org/10.1007/BF02337057
  12. C. Zhang. (1992). Mixed convection inside horizontal tubes with nominally uniform heat flux. AIChE Symp. 88, 212-219.
  13. G. J. Hwang & H. C. Lai. (1994). Laminar convection heat transfer in a horizontal isothermal tube for high numbers. Int. J. Heat Mass Transfer, 37, 1631-1640. https://doi.org/10.1016/0017-9310(94)90178-3
  14. K. J. Kim. (2018). A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures. Journal of Convergence for Information Technology, 8, 95-100.
  15. Y. S. Jeong, Y. T Kim & G. C Park. (2016). A Three-dimensional Numerical Weather Model using Power Output Predict of Distributed Power Source. Journal of Convergence for Information Technology, 6, 93-98.
  16. M. Manninen, V. Taivassalo & S. Kallio. (1996). On the mixture model for multiphase flow. VTT Publications, 288, Technical Research Centre of Finland.
  17. L. Schiller & Z. Naumann. (1935). A drag coefficient correlation, V.D.I. Zeitung 77, 318.
  18. 2019, Fluent, ANSYS Fluent V.19 User Guide, USA.
  19. K. Khanafer & K. Vafai. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4010-4428.
  20. R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52, 4675-4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
  21. K. Khanafer, K. Vafai & M. Lightstone. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653. https://doi.org/10.1016/S0017-9310(03)00156-X
  22. S. A. Zonouzi, H. Aminfar & M. Mohammadpourfard. (2014). 3D Numerical Investigation of Thermal Characteristics of Nanofluid Flow through Helical Tubes Using Two-Phase Mixture Model. International Journal for Computational Methods in Engineering Science and Mechanics, 15, 512-521. https://doi.org/10.1080/15502287.2014.952847
  23. D. H Kim et al. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9, 119-123. https://doi.org/10.1016/j.cap.2008.12.047