두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan

  • 서성국 (삼성서울병원 방사선종양학과) ;
  • 권동열 (삼성서울병원 방사선종양학과) ;
  • 박세준 (삼성서울병원 방사선종양학과) ;
  • 박용철 (삼성서울병원 방사선종양학과) ;
  • 최병기 (삼성서울병원 방사선종양학과)
  • Seo, Sung Gook (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Kwon, Dong Yeol (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Park, Se Joon (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Park, Yong Chul (Dept. of Radiation Oncology, Samsung Medical Center) ;
  • Choi, Byung Ki (Dept. of Radiation Oncology, Samsung Medical Center)
  • 발행 : 2019.06.29

초록

목 적: 두경부 방사선 치료 시 Dental Implant에 의한 Metal Artifact로 인해 보철물의 크기, 모양 및 Volume이 달라지고 이로 인해 타겟 및 주변 정상조직에 대한 방사선치료계획의 정확성이 떨어진다. 본 연구는 치아크기를 재현한 Metal을 KVCT, SMART-MAR CT, MVCT를 통해 영상을 획득 하여 Volume을 평가하고 양성자 치료계획에 적용시켜 선량분포의 차이를 분석해 보고자 한다. 대상 및 방법: 치과에서 치료하는 방법을 고려하여 인레이, 크라운, 브릿지와 비슷한 크기의 A보철물($0.5{\times}0.5{\times}0.5cm$), B보철물($1{\times}1{\times}1cm$), C보철물($1{\times}2{\times}1cm$)을 저용융점납합금(Cerrobend, $9.64g/cm^3$) 사용하여 제작하였다. In House Head & Neck Phantom 안에 보철물를 위치시키고 CT Simulator(Discovery CT 590RT, GE, USA)를 이용해 Slice thickness 1.25 mm로 KVCT 영상과 SMART-MAR 영상을 획득하였다. MVCT 영상은 $RADIXACT^{(R)}$ Series(Accuray $Pricision^{(R)}$, USA)을 이용해 동일한 방법으로 획득하였다. MVCT, SMART-MAR CT, KVCT를 통해 획득한 보철물의 형상을 전산화 치료계획장비 Pinnacle(Ver 9.10, Philips, Palo Alto, USA)의 Autocontour Thresholds Raw Values를 통해 X, Y, Z축의 크기 및 Volume을 비교하였다. 양성자 치료계획은 위의 실험에서 얻은 보철물B($1{\times}1{\times}1cm$)의 각 CT별 치아 Contour를 KVCT 상에 fusion하여 양성자 치료계획(Ray station 5.1, RaySearch, USA)을 세우고 선량의 차이를 비교 평가하였다. 결 과: 실측 사이즈 대비 A보철물(MVCT : 1.0배, SMART-MAR CT : 1.84배, KVCT : 1.92배), B보철물(MVCT : 1.02배, SMART-MAR CT : 1.47배, KVCT : 1.82배), C보철물(MVCT : 1.0배, SMART-MAR CT : 1.46배, KVCT : 1.66배)로 각 크기의 보철물에서 MVCT가 가장 실제 Volume과 유사하게 측정되었다. 양성자 치료계획에서 B보철물의 Volume을 각각 적용하여 측정한 결과 $D_{99\%}$ volume의 선량이 기준 3082 CcGE 대비 MVCT:3094 CcGE, SMART-MAR CT:2902 CcGE, KVCT:2880 CcGE로 측정되었다. 결 론: 전체적인 Volume과 X축 Z축의 크기는 MVCT에서 실제 크기와 가장 일치했고 superior-Inferior방향인 Y축은 CT에 따라 차이 없이 길이가 일정했다. 두경부 양성자 치료 시 보철물의 크기, 모양 및 Volume이 비슷한 MVCT에서 가장 실제 값과 비슷한 선량분포를 보였고 MVCT를 이용한 보철물의 contour를 KVCT에 fusion하여 양성자치료계획에 적용 시 매우 유용할 것으로 사료된다.

Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

키워드

참고문헌

  1. Hoheisel M: Review of medical imaging with emphasis on X-ray detectors. Nucl. Instr. Meth. A. 2006;563:215-24. [Google Scholar] https://doi.org/10.1016/j.nima.2006.01.123
  2. 이상태: "TEXTBOOK of Computed Tomography". 청구문화사. 2005
  3. F. E. Boas and D. Fleischmann: Computed tomography artifacts: Causes and reduction techniques. Imaging in Medicine 4 (2) 2012;229-240 https://doi.org/10.2217/iim.12.13
  4. 한영길.장요종.강동혁 등: 국립암센터 양성자치료센터의 양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가. 대한방사선치료학회지 제29권 제1호, 2017
  5. Langen KM, Meeks SL, Poole DO, Wagner TH et al.:The use of megavoltage CT (MVCT) images for dose recomputations. GHPhys Med Biol. 2005 Sep 21;50(18):4259-76. [PubMed] [Ref list] https://doi.org/10.1088/0031-9155/50/18/002
  6. Gao Liugang1, Sun Hongfei1, Ni Xinye1 et al.: Metal artifact reduction through MVCBCT and kVCT in radiotherapy. 3. Scientific RepoRts l 6:37608 l DOI:10.1038/srep37608
  7. Jakel O, Reiss P.: The influence of metal artefacts on the range of ion beams. Phys. Med. Biol. 2007;52:635-44. [PubMed] [Google Scholar]), https://doi.org/10.1088/0031-9155/52/3/007
  8. Wei J, Sandison GA, Hsi WC, Ringor M et al.: Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies. Lu X Phys Med Biol. 2006 Oct 21; 51(20):5183-97. [PubMed] [Ref list] https://doi.org/10.1088/0031-9155/51/20/007
  9. Brink, JA, et al. "Helical CT: principles and technical considerations." Radiographics 1994 14(4):887. https://doi.org/10.1148/radiographics.14.4.7938775
  10. LEVIN, W. P., et al.: Proton beam therapy. British journal of Cancer, 2005; 93.8:849-854 https://doi.org/10.1038/sj.bjc.6602754