DOI QR코드

DOI QR Code

Effect of various environmental factors such as concentration of NaClO2, relative humidity, temperature, and time on the production of gaseous chlorine dioxide

다양한 환경조건(NaClO2 농도, 상대습도, 온도, 시간)에 따른 이산화염소 기체의 발생량 변화

  • Lee, Jeongmin (Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Nam-Teak (Institute for National Biodefense Research, College of Life Sciences and Biotechnology, Korea University) ;
  • Ryu, Jee-Hoon (Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 이정민 (고려대학교 생명과학대학 식품공학과) ;
  • 이남택 (고려대학교 생명과학대학 생물방어연구소) ;
  • 류지훈 (고려대학교 생명과학대학 식품공학과)
  • Received : 2019.05.10
  • Accepted : 2019.05.24
  • Published : 2019.08.31

Abstract

This study was performed to determine the optimum conditions for the production of gaseous chlorine dioxide ($ClO_2$) from aqueous $ClO_2$ (HCl+$NaClO_2$). When 1 N HCl was reacted with various concentrations of $NaClO_2$ (50,000-500,000 mg/mL), the highest concentration (695 mg/L) of gaseous $ClO_2$ was obtained from the aqueous $ClO_2$ containing $100,000{\mu}g/mL$ $NaClO_2$. Next, the effects of relative humidity (RH; 43, 85, and 100%) and temperature (4, 12, and $25^{\circ}C$) on the production of gaseous $ClO_2$ were investigated. It was observed that the concentration of gaseous $ClO_2$ was increased as RH was decreased, or the temperature was increased. Finally, it was confirmed that the amount of gaseous $ClO_2$ was highly correlated ($R^2=0.9546-0.9992$) with the volume of aqueous $ClO_2$. The results of this study provide useful information for designing a sanitization program using gaseous $ClO_2$ under various environmental conditions.

본 연구는 염산(hydrochloric acid; HCl)과 아염소산나트륨(sodium chlorite; $NaClO_2$)을 이용해 이산화염소 기체를 발생시키기 위한 최적조건을 확립하기 위해 수행되었다. 먼저 HCl (1 N)에 다양한 농도의 $NaClO_2$ ($50,000-500,000{\mu}g/mL$)를 반응시킨 결과, $100,000{\mu}g/mL$ 농도의 $NaClO_2$를 포함하는 이산화염소 용액으로부터 가장 고농도(695 mg/L)의 이산화염소 기체가 생성되었다. 이후 진행되는 실험은 이산화염소 용액(1 N HCl+$100,000{\mu}g/mL$ $NaClO_2$)을 사용하여 이산화염소 기체를 발생시켰다. 다음으로 상대습도(43, 85, 100%) 또는 온도(4, 12, $25^{\circ}C$)가 이산화염소 기체의 발생에 미치는 영향을 확인한 결과, 상대습도가 감소함에 따라 온도는 높아짐에 따라 이산화염소 기체 발생 농도도 높아짐을 확인하였다. 마지막으로 이산화염소 용액의 용량과 이산화염소 기체 생성량 사이의 관계식을 도출하였다. 본 연구의 결과는 향후 이산화염소 기체를 이용하여 식품 및 식품 접촉 표면을 살균하기 위한 프로그램을 개발하는데 있어서 유용한 정보를 제공할 것이다.

Keywords

SPGHB5_2019_v51n4_404_f0001.png 이미지

Fig. 1. Diagram of an airtight container used of measuring the concentration of gaseous ClO2.

SPGHB5_2019_v51n4_404_f0002.png 이미지

Fig. 2. Concentration of gaseous chlorine dioxide (ClO2) at 43% RH in an airtight container (1.8 L) held at 25 for up to 1 h.

SPGHB5_2019_v51n4_404_f0003.png 이미지

Fig. 3. Concentration of gaseous chlorine dioxide (ClO2) at 43% (○), 85% (□), or 100% (△) RH in an airtight container (1.8 L) held at 25°C for up to 1 h.

SPGHB5_2019_v51n4_404_f0004.png 이미지

Fig. 4. Concentration of gaseous chlorine dioxide (ClO2) at 4°C (○), 12°C (□), and 25°C (△) in an airtight container (1.8 L) held at 43, 85, or 100% RH for up to 1 h.

SPGHB5_2019_v51n4_404_f0005.png 이미지

Fig. 5. Concentration of gaseous chlorine dioxide (ClO2) at 43% (○), 85% (□), or 100% (△) RH in an airtight container (1.8 L) held at 25°C for 10 min.

SPGHB5_2019_v51n4_404_f0006.png 이미지

Fig. 6. Concentration of gaseous chlorine dioxide (ClO2) at 43% (○), 85% (□), and 100% (△) RH in an airtight container (1.8 L) held at 4°C or 12°C for 30 min. Gaseous ClO2 vaporized spontaneously from various volume of aqueous ClO2.

References

  1. Bang J, Choi M, Son H, Beuchat LR, Kim Y, Kim H, Ryu J-H. Sanitizing radish seeds by simultaneous treatments with gaseous chlorine dioxide, high relative humidity, and mild heat. Int. J. Food Microbiol. 237: 150-156 (2016) https://doi.org/10.1016/j.ijfoodmicro.2016.08.022
  2. Bang J, Hong A, Kim H, Beuchat LR, Rhee MS, Kim Y, Ryu J-H. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Int. J. Food Microbiol. 191: 129-134 (2014) https://doi.org/10.1016/j.ijfoodmicro.2014.09.014
  3. Benarde MA, Israel BM, Olivieri VP, Granstrom ML. Efficiency of chlorine dioxide as a bactericide. Appl. Microbiol. 13: 776-780 (1965) https://doi.org/10.1128/AEM.13.5.776-780.1965
  4. Beuchat LR. Surface decontamination of fruits and vegetables eaten raw: a review. WHO/FSF/FOS/98.2, Food Safety Unit, World Health Organization (1998)
  5. FDA (U.S. Food and Drug Administration). Guidance for industry: Guide to minimize microbial food safety hazards for fresh fruits and vegetables (1998)
  6. Gomez-Lopez VM, Devlieghere F, Ragaert P, Debevere J. Shelf-life extension of minimally processed carrots by gaseous chlorine dioxide. Int. J. Food Microbiol. 116: 221-227 (2007) https://doi.org/10.1016/j.ijfoodmicro.2006.12.008
  7. Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F. Decontamination methods to prolong the shelf-life of minimally processed vegetables, state-of-the-art. Crit. Rev. Food Sci. Nutr. 48: 487-495 (2008a) https://doi.org/10.1080/10408390701638878
  8. Gomez-Lopez VM, Ragaert P, Jeyachchandran V, Debevere J, Devlieghere F. Shelf-life of minimally processed lettuce and cabbage treated with gaseous chlorine dioxide and cysteine. Int. J. Food Microbiol. 121: 74-83 (2008b) https://doi.org/10.1016/j.ijfoodmicro.2007.11.036
  9. Gomez-Lopez VM, Rajkovic A, Ragaert P, Smigic N, Devlieghere F. Chlorine dioxide for minimally processed produce preservation: a review. Trends Food Sci. Technol. 20: 17-26 (2009) https://doi.org/10.1016/j.tifs.2008.09.005
  10. Han Y, Floros JD, Linton RH, Nielsen SS, Nelson PE. Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum L.) by chlorine dioxide gas treatments. J. Food Protect. 64: 1128-1133 (2001) https://doi.org/10.4315/0362-028X-64.8.1128
  11. Jin D-S, Deshwal B-R, Park Y-S, Lee H-K. Simultaneous removal of $SO_2$ and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. B135: 412-417 (2006)
  12. Kim H, Kang Y, Beuchat LR, Ryu JH. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores. Food Microbiol. 25: 964-969 (2008) https://doi.org/10.1016/j.fm.2008.05.008
  13. Lee H, Beuchat LR, Ryu JH, Kim H. Inactivation of Salmonella Typhimurium on red chili peppers by treatment with gaseous chlorine dioxide followed by drying. Food Microbiol. 76: 78-82 (2018). https://doi.org/10.1016/j.fm.2018.04.016
  14. Lopez-Velasco G, Tomas-Callejas A, Sbodio A, Artes-Hernandez F, Suslow TV. Chlorine dioxide dose, water quality and temperature affect the oxidative status of tomato processing water and its ability to inactivate Salmonella. Food Control. 26: 28-35 (2012) https://doi.org/10.1016/j.foodcont.2011.12.016
  15. Marriott NG, Gravani RB. Sanitizers. pp. 172-173. In: Principles of Food Sanitation, fifth ed. Marriott NG, Gravani RB (eds.). Springer Science+Business Media, Inc., New York, NY, USA (2006)
  16. Nam H, Seo HS, Bang J, Kim H, Beuchat LR, Ryu JH. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Int. J. Food Microbiol. 188: 122-127 (2014) https://doi.org/10.1016/j.ijfoodmicro.2014.07.009
  17. Novak J, Demirci A, Han Y. Novel chemical processes: ozone, supercritical $CO_2$, electrolyzed oxidizing water, and chlorine dioxide gas. Food Sci Tech Int. 14: 437-441 (2008) https://doi.org/10.1177/1082013208098815
  18. Park S, Beuchat LR, Kim H, Ryu JH. Inactivation of Salmonella enterica in chicken feces on the surface of eggshells by simultaneous treatments with gaseous chlorine dioxide and mild wet heat. Food Microbiol. 62: 202-206 (2017) https://doi.org/10.1016/j.fm.2016.10.026
  19. Park SH, Kang DH. Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control. 81: 88-95 (2017) https://doi.org/10.1016/j.foodcont.2017.05.015
  20. Park SH, Kang DH. Effect of temperature on chlorine dioxide inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach, tomatoes, stainless steel, and glass surfaces. Int. J. Food Microbiol. 275: 39-45 (2018) https://doi.org/10.1016/j.ijfoodmicro.2018.03.015
  21. Taylor JH, Rogers SJ, Holah JT. A comparison of bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli O157:H7 and Pseudomonas aeruginosa at 10 and 20. J. Appl. Microbiol. 87: 718-725 (1999) https://doi.org/10.1046/j.1365-2672.1999.00916.x
  22. Trinetta V, Vaidya N, Linton R, Morgan M. Evaluation of chlorine dioxide gas residues on selected food produce. J. Food Sci. 76: T11-T15 (2011) https://doi.org/10.1111/j.1750-3841.2010.01911.x
  23. Tzanavaras PD, Themelis DG, Kika FS. Review of analytical methods for the determination of chlorine dioxide. Cent. Eur. J. Chem. 5: 1-12 (2007) https://doi.org/10.2478/s11532-006-0054-9