참고문헌
- Abouhussien, A.A., Hassan, A.A.A. and Ismail, M.K. (2015), "Properties of semi-lightweight self-consolidating concrete containing lightweight slag aggregate", Constr. Build. Mater., 75, 63-73. https://doi.org/10.1016/j.conbuildmat.2014.10.028.
- Aggarwal, P., Siiddique, R., Aggarwal, Y. and Gupta, S.M. (2008), "Self-compacting concrete-procedure for mix design", Leonardo Elec. J. Pract. Technol., 7(12), 15-24.
- Ahari, R.S., Erdem, T.K. and Ramyar, K. (2015), "Timedependent rheological characteristics of self-consolidating concrete containing various mineral admixtures", Constr. Build. Mater., 88, 134-142. https://doi.org/10.1016/j.conbuildmat.2015.04.015.
- Ahmed, S. (2009), "Fresh and mechanical properties of selfconsolodating concrete incorporationg silica fume and metakaolin", Theses and dissertation of Master of Civil Engineering, Reyson University.
- Alabi, S.A., Olanitori, L.M. and Afolayan, J.O. (2012), "Optimum mix design for minimum concrete strength requirement using akure pit-sand as fine aggregate", J. Emerg. Trend. Eng. Appl. Sci., 3(4), 718-724.
- Alyhya, W.S. (2016), "Self-compacting concrete: mix proportioning, properties and its flow simulation in the Vfunnel", Doctoral Dissertation, Cardiff University.
- Apostolopoulour, M., Douvika, M.G., Kanellopoulos, I.N., Moropoulou, A. and Asteris, P.G. (2018), "Prediction of compressive strength of mortars using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
- Ashrafian, A., Amiri, M.J.T., Rezaie-Balf, M., Ozbakkaloglu, T. and Lotfi-Omran, O. (2018), "Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods", Constr. Build. Mater., 190, 479-494, https://doi.org/10.1016/j.conbuildmat.2018.09.047.
- Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31, 409-424, https://doi.org/10.1007/s00521-017-3007-7.
- Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neur. Comput. Appl., 1-11. https://doi.org/10.1007/s00521-018-03965-1.
- Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J., Paulo B. and Lourenco, P.B. (2018), "Masonry compressive strength prediction using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
- Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20(sup1), s102-s122, https://doi.org/10.1080/19648189.2016.1246693.
- Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2018), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
- Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sens., (Switzerland), 17(6), 1344. https://doi.org/10.3390/s17061344
- Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intel. Neurosci., 5104907. https://doi.org/10.1155/2016/5104907.
- AzariJafari, H., Amiri, M.J.T., Ashrafian, A., Rasekh, H., Barforooshi, M.J. and Berenjian, J. (2019), "Ternary blended cement: an eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature", J. Clean. Prod., 223, 575-586. https://doi.org/10.1016/j.jclepro.2019.03.054.
- Badogiannis, E.G., Sfikas, I.P., Voukia, D.V., Trezos, K.G. and Tsivilis, S.G. (2015), "Durability of metakaolin self-compacting concrete", Constr. Build. Mater., 82, 133-141. https://doi.org/10.1016/j.conbuildmat.2015.02.023.
- Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall using two hybrid intelligent models", Appl. Sci., 9, 1042. https://doi.org/10.3390/app9061042.
- Chitroju, S.T.D. and Yerikenaboina, A. (2018), "Study the influence of metakaolin and foundry sand on self-compacting concrete properites", Int. Res. J. Eng. Technol. (IRJET), 5(4), 4027-4033.
- Coleman, N.J. and Page, C.L. (1997), "Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin", Cement Concrete Res., 27(1), 147-154. https://doi.org/10.1016/S0008-8846(96)00184-6.
- Dadsetan, S. and Bai, J. (2017), "Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash", Constr. Build. Mater., 146, 658-667. https://doi.org/10.1016/j.conbuildmat.2017.04.158.
- Dinakar, P. and Manu, S.N. (2014), "Concrete mix design for high strength self-compacting concrete using metakaolin", Mater. Des., 60, 661-668. https://doi.org/10.1016/j.matdes.2014.03.053.
- Ferreira, R.M., Castro-Gomes, J.P., Costa, P. and Malheiro, R. (2016), "Effect of metakaolin on the chloride ingress properties of concrete", KSCE J. Civil Eng., 20(4), 1375-1384. https://doi.org/10.1007/s12205-015-0131-8.
- Frias, and Cabrera, J. (2000), "Pore size distribution and degree of hydration of metakaolin-cement pastes", Cement Concrete Res., 30(4), 561-569. https://doi.org/10.1016/S0008-8846(00)00203-9.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statist., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Gholampour, A.A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/j.conbuildmat.2016.10.114.
- Gilan, S.S., Bahrami Jovein, H. and Ramezanianpour, A.A. (2012), "Hybrid support vector regression-Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038.
- Gilan, S.S., Jovein, H.B. and Ramezanianpour, A.A. (2012), "Hybrid support vector regression-particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038.
- Gill, A.S. and Siddique, R. (2018), "Durability properties of selfcompacting concrete incorporating metakaolin and rice husk ash", Constr. Build. Mater., 176, 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054.
- Guneyisi, E., Gesoglu, M. and O zbay, E. (2009), "Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network", Mater. Struct., 42(4), 469-484. https://doi.org/10.1617/s11527-008-9395-5.
- Hassan, A.A.A., Ismail, M.K. and Mayo, J. (2015), "Mechanical properties of self-consolidating concrete containing lightweight recycled aggregate in different mixture compositions", J. Build. Eng., 4, 113-126. https://doi.org/10.1016/j.jobe.2015.09.005.
- Hassan, A.A.A., Lachemi, M. and Hossain, K.M.A. (2012a), "Effect of metakaolin and silica fume on the durability of selfconsolidating concrete", Cement Concrete Compos., 34(6), 801-807. https://doi.org/10.1016/j.cemconcomp.2012.02.013.
- Hassan, A.A.A., Lachemi, M. and Hossain, K.M.A. (2012b), "Effect of metakaolin and silica fume on the durability of selfconsolidating concrete", Cement Concrete Compos., 34(6), 801-807. https://doi.org/10.1016/j.cemconcomp.2012.02.013.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd Edition, Springer.
- Jekabsons, G. (2010), "VariReg: a software tool for regression modelling using various modeling methods", Riga Technical University, http://www.cs.rtu.lv/jekabsons/.
- Johari, M.M., Brooks, J.J., Kabir, S. and Rivard, P. (2011), "Influence of supplementary cementitious materials on engineering properties of high strength concrete", Constr. Build. Mater., 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.
- Joseph, A., Mathew, L.A. and John, R. (2017), "Performance of Metakaolin on high strength self compacting concrete", Int. J. Sci. Technol. Eng., 3(12), 110-114.
- Justice, J.M. and Kurtis, K.E. (2007), "Influence of metakaolin surface area on properties of cement-based materials", J. Mater. Civil Eng., 19(9), 762-771. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(762).
- Kannan, V. and Ganesan, K. (2015), "Effect of Tricalcium aluminate on durability properties of self-compacting concrete incorporating rice husk ash and Metakaolin", J. Mater. Civil Eng., 28(1), 04015063. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001330.
- Kavitha, O.R., Shanthi, V.M., Arulraj, G.P. and Sivakumar, P. (2015), "Fresh, micro-and macrolevel studies of metakaolin blended self-compacting concrete", Appl. Clay Sci., 114, 370-374. https://doi.org/10.1016/j.clay.2015.06.024.
- Khatib, J.M. (2008), "Metakaolin concrete at a low water to binder ratio", Constr. Build. Mater., 22(8), 1691-1700. https://doi.org/10.1016/j.conbuildmat.2007.06.003.
- Khatib, J.M. (2008), "Performance of self-compacting concrete containing fly ash", Constr. Build. Mater., 22(9), 1963-1971. https://doi.org/10.1016/j.conbuildmat.2007.07.011.
- Kiani, B., Gandomi, A.H., Sajedi, S. and Liang, R.Y. (2016), "New formulation of compressive strength of preformed-foam cellular concrete: an evolutionary approach", J. Mater. Civil Eng., 28(10), 04016092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001602.
- Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., 5(1), 31-48. https://doi.org/10.12989/acc.2017.5.1.31.
- Madandoust, R. and Mousavi, S.Y. (2012), "Fresh and hardened properties of self-compacting concrete containing metakaolin", Constr. Build. Mater., 35, 752-760. https://doi.org/10.1016/j.conbuildmat.2012.04.109.
- Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4.
- Mehrinejad Khotbehsara, M., Mohseni, E., Ozbakkaloglu, T. and Ranjbar, M.M. (2017), "Durability characteristics of selfcompacting concrete incorporating pumice and metakaolin", J. Mater. Civil Eng., 29(11), 04017218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002068.
- Mehta, P.K. (1978), "Siliceous ashes and hydraulic cements prepared therefrom", U.S. Patent No. 4,105,459, The Regents of the University of California.
- Poon, C.S., Kou, S.C. and Lam, L. (2006), "Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete", Constr. Build. Mater., 20(10), 858-865. https://doi.org/10.1016/j.conbuildmat.2005.07.001.
- Quinlan, J.R. (1992), "Learning with continuous classes", Ed. Adams, S., Proceedings of AI'92. World Scientific, 343-348.
- Ramezanianpour, A.A. and Jovein, H.B. (2012), "Influence of metakaolin as supplementary cementing material on strength and durability of concretes", Constr. Build. Mater., 30, 470-479. https://doi.org/10.1016/j.conbuildmat.2011.12.050.
- Rezaie-Balf, M., Zahmatkesh, Z. and Kim, S. (2017), "Soft computing techniques for rainfall-runoff simulation: Local nonparametric paradigm vs. model classification methods", Water Resour. Manage., 31(12), 3843-3865. https://doi.org/10.1007/s11269-017-1711-9.
- Sabir, B.B., Wild, S. and Bai, J. (2001), "Metakaolin and calcined clays as pozzolans for concrete: a review", Cement Concrete Compos., 23(6), 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5.
- Sattar, A.M.A. and Gharabaghi, B. (2015), "Gene expression models for prediction of longitudinal dispersion coefficient in streams", J. Hydrol., 524, 587-596. https://doi.org/10.1016/j.jhydrol.2015.03.016.
- Sfikas, I.P., Badogiannis, E.G. and Trezos, K.G. (2014), "Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin", Constr. Build. Mater., 64, 121-129. https://doi.org/10.1016/j.conbuildmat.2014.04.048.
- Sipos, T K , ilicevic, I and Siddique, R. (2017), "Model for mix design of brick aggregate concrete based on neural network modelling", Constr. Build. Mater., 148, 757-769. https://doi.org/10.1016/j.conbuildmat.2017.05.111.
- Sonebi, M., Cevik, A., Grunewald, S. and Walravan, J. (2016b), "Modelling the fresh properties of self-compacting concrete using support vector machine approach", Constr. Build. Mater., 106, 55-64. https://doi.org/10.1016/j.conbuildmat.2015.12.035.
- Sonebi, M., Grunewald, S., Cevik, A. and Walraven, J. (2016a), "Modelling fresh properties of self-compacting concrete using Neural network technique", Comput. Concrete, 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.4.903.
- Tropsha, A., Gramatica, P. and Gombar, V.K. (2003), "The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models", QSAR Combin. Sci., 22(1), 69-77. https://doi.org/10.1002/qsar.200390007.
- Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/doi.org/10.1016/j.conbuildmat.2015.03.059.
- Wang, Y. and Witten, I.H. (1997), "Induction of model trees for predicting continuous lasses", Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague.
- Wild, S., Khatib, J.M. and Jones, A. (1996), "Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete", Cement Concrete Res., 26(10), 1537-1544. https://doi.org/10.1016/0008-8846(96)00148-2.
- Wild, S., Khatib, J.M. and Jones, A. (1996), "Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete", Cement Concrete Res., 26(10), 1537-1544. https://doi.org/10.1016/0008-8846(96)00148-2.
- Witten, I.H., Frank, E. and Hall, M.A. (2005), "Data mining: practical machine learning tools and techniques with Java implementations", Morgan Kaufmann Series in Data Management Systems, San Francisco.
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.
- Zhang, W.G. and Goh, A.T.C. (2016), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003.
피인용 문헌
- Prediction of Ultimate Load of Rectangular CFST Columns Using Interpretable Machine Learning Method vol.2020, 2019, https://doi.org/10.1155/2020/8855069
- Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest vol.10, pp.5, 2020, https://doi.org/10.3390/app10051871
- Daily flow forecasting of perennial rivers in an arid watershed: a hybrid ensemble decomposition approach integrated with computational intelligence techniques vol.69, pp.6, 2019, https://doi.org/10.2166/aqua.2020.138
- Statistical Approach for the Design of Structural Self-Compacting Concrete with Fine Recycled Concrete Aggregate vol.8, pp.12, 2019, https://doi.org/10.3390/math8122190
- Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods vol.27, pp.4, 2019, https://doi.org/10.12989/cac.2021.27.4.305
- Model-Based Methods to Produce Greener Metakaolin Composite Concrete vol.11, pp.22, 2019, https://doi.org/10.3390/app112210704
- Sensitivity Analysis of Stochastic Calculation of SCC Regarding Aggressive Environment vol.14, pp.22, 2021, https://doi.org/10.3390/ma14226838