References
- Anwar, H. and Khandaker, M. (2009), "Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete", Comput. Concrete, 6(6), 437-450. https://doi.org/10.12989/cac.2009.6.6.437.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- ASTM C1074 (1998), Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM International, West Conshohocken, Pennsylvania, USA.
- Chen, H.J., Yang, T.Y. and Tang, C.W. (2009), "Strength and durability of concrete in hot spring environments", Comput. Concrete, 6(4), 269-280. https://doi.org/10.12989/cac.2009.6.4.269.
- ConcreteSensors (2018), Our Sensors are Designed for the Unique Challenges of Concrete, ConcreteSensors, Cambridge, England, UK. www.concretesensors.com/durable-wireless-sensors/.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Erdal, H., Erdal M., Simsek O. and Erdal H. (2018) "Prediction of concrete compressive strength using non-destructive test results", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.
- Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concrete Constr., 5(6), 659-669. https://doi.org/10.12989/acc.2017.5.6.659.
- Fick, G., Taylor, P., Christman, R. and Ruiz, J.M. (2012), "Field reference manual for quality concrete pavements", U.S. Department of Transportation, Austin, Texas, USA.
- Gazder, U., Al-Amoudi, O.S.B., Saad Khan, S.M. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/ 10.12989/cac.2017.20.6.627.
- Ge, Z. and Wang, K. (2009), "Modified heat of hydration and strength models for concrete containing fly ash and slag", Comput. Concrete, 6(1), 19-40. https://doi.org/10.12989/cac.2009.6.1.019.
- Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: Current issues and challenges", Smart Struct. Syst., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509.
- Helal, J., Sofi, M. and Mendis, P. (2015), "Non-destructive testing of concrete: A review of methods", Elec. J. Struct. Eng., 14(1), 97-105.
- Kibar, H. and Ozturk, T. (2015), "Determination of concrete quality with destructive and non-destructive methods", Comput. Concrete, 15(3), 473-484. https://doi.org/10.12989/cac.2015.15.3.473.
- Kockal, N.U. and Turker, F. (2007), "Effect of environmental conditions on the properties of concretes with different cement types", Constr. Build. Mater., 21(3), 634-645. https://doi.org/10.1016/j.conbuildmat.2005.12.004.
- Malek, J. and Kaouther, M. (2014), "Destructive and nondestructive testing of concrete structures", Jordan J. Civil Eng., 8(4), 432-441. https://doi.org/10.12816/0025889.
- NIIZhB (2012), GOST 10180-2012 Concretes. Methods for Strength Determination using Reference Specimens, NIIZhB, Moscow, Russia.
- Sethi, P. and Sarangi, S.R. (2017), "Internet of things: Architectures, protocols, and applications", J. Elec. Comput. Eng., 1-25. https://doi.org/10.1155/2017/9324035.
- SmartRock (2018), Real-time Temperature and Maturity Monitoring of Concrete, Giatec Scientific Inc., Ottawa, Ontario, Canada. www.giatecscientific.com/products/concretesensors/smartrock-maturity-meter/.
- Thandavamoorthy, T.S. (2015), "Determination of concrete compressive strength: A novel approach", Adv. Appl. Sci. Res., 6(10), 88-96.
- Walsh, D. (2016), IoT Hero from Giatec Develops "SmartRocks", with Bluetooth, Giatec Scientific Inc., Ottawa, Ontario, Canada. www.silabs.com/community/blog.entry.html/2016/01/18/iot_hero_from_giatec-Av1P.
- Zemajtis, J.Z. (2014), Role of Concrete Curing, Portland cement association, Skokie, Illinois, USA.
- Zhang, B., Cullen, M. and Kilpatrick, T. (2016), "Spalling of heated high performance concrete due to thermal and hygric gradients", Adv. Concrete Constr., 4(1), 1-13. https://doi.org/10.12989/acc.2016.4.1.001.
Cited by
- Complex Maturity Method for Estimating the Concrete Strength Based on Curing Temperature, Ambient Temperature and Relative Humidity vol.11, pp.16, 2021, https://doi.org/10.3390/app11167712
- HIGROTERM: An Open-Source and Low-Cost Temperature and Humidity Monitoring System for Laboratory Applications vol.6, pp.4, 2021, https://doi.org/10.3390/inventions6040084