DOI QR코드

DOI QR Code

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

  • Lee, Song Hee (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • Ali, Asjad (EnvironmentFriendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ha, Byeongsuk (EnvironmentFriendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min-Keun (EnvironmentFriendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ryu, Jae-San (Department of Mushroom Science, Korea National College of Agriculture and Fisheries)
  • Received : 2019.04.04
  • Accepted : 2019.05.12
  • Published : 2019.06.01

Abstract

Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker $7-2_{299}$ distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.

Keywords

References

  1. Kues U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev. 2000;64:316-353. https://doi.org/10.1128/MMBR.64.2.316-353.2000
  2. Kues U. From two to many: multiple mating types in Basidiomycetes. Fungal Biol Rev. 2015;29:126-166. https://doi.org/10.1016/j.fbr.2015.11.001
  3. Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell. 2010;9:847-859. https://doi.org/10.1128/EC.00319-09
  4. Kim K-H, Kang YM, Im CH, et al. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One. 2014;9:e104693. https://doi.org/10.1371/journal.pone.0104693
  5. Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev. 1998;62:55-70. https://doi.org/10.1128/MMBR.62.1.55-70.1998
  6. Banham AH, Asante-Owusu RN, Gottgens B, et al. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell. 1995;7:773-783. https://doi.org/10.1105/tpc.7.6.773
  7. O'Shea SF, Chaure PT, Halsall JR, et al. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics. 1998;148:1081-1090. https://doi.org/10.1093/genetics/148.3.1081
  8. Ryu J-S, Kim MK, Ro H-S, et al. Identification of mating type loci and development of SCAR marker genetically linked to the B3 locus in Pleurotus eryngii. J Microbiol Biotechnol. 2012;22:1177-1184. https://doi.org/10.4014/jmb.1108.08085
  9. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol. 2001;56:602-612. https://doi.org/10.1007/s002530100763
  10. Estrada AR, Royse D. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour Technol. 2007;98:1898-1906. https://doi.org/10.1016/j.biortech.2006.07.027
  11. Ngai PH, Ng T. A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol. 2006;72:1185-1191. https://doi.org/10.1007/s00253-006-0406-6
  12. Zervakis G, Venturella G. Mushroom breeding and cultivation enhances ex situ conservation of Mediterranean Pleurotus taxa. In: Engels JMM, Ramanantha Rao V, Brown AHD, Jackson MT, editors. Managing plant genetic diversity. New York, USA: CABI Publishing; 2002. p. 351-358.
  13. Zhang R, Hu D, Zhang J, et al. Development and characterization of simple sequence repeat (SSR) markers for the mushroom Flammulina velutipes. J Biosci Bioeng. 2010;110:273-275. https://doi.org/10.1016/j.jbiosc.2010.04.001
  14. Tanaka A, Miyazaki K, Murakami H, et al. Sequence characterized amplified region markers tightly linked to the mating factors of Lentinula edodes. Genome. 2004;47:156-162. https://doi.org/10.1139/g03-131
  15. Scovel G, Ben-Meir H, Ovadis M, et al. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet. 1998;96:117-122. https://doi.org/10.1007/s001220050717
  16. Ryu J, Kim K, Im C, et al., editors. Complete genome sequence of Pleurotus eryngii KNR2312 using the next generation sequencing (NGS). 80th Meeting of the Mycological Society of America. The Mycological Society of America, New Haven, CT, USA; 2012.
  17. Michelmore RW, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88:9828-9832. https://doi.org/10.1073/pnas.88.21.9828
  18. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327-W331. https://doi.org/10.1093/nar/gkh454
  19. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162-1164. https://doi.org/10.1126/science.252.5009.1162
  20. Ba ANN, Pogoutse A, Provart N, et al. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10:202. https://doi.org/10.1186/1471-2105-10-202
  21. Im CH, Park Y-H, Hammel KE, et al. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii. Fungal Genet Biol. 2016;92:50-64. https://doi.org/10.1016/j.fgb.2016.05.002
  22. Au CH, Wong MC, Bao D, et al. The genetic structure of the A mating-type locus of Lentinula edodes. Gene. 2014;535:184-190. https://doi.org/10.1016/j.gene.2013.11.036
  23. Zhao M, Zhang J, Chen Q, et al. The famous cultivated mushroom Bailinggu is a separate species of the Pleurotus eryngii species complex. Sci Rep. 2016;6:33066. https://doi.org/10.1038/srep33066
  24. James TY, Liou S-R, Vilgalys R. The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol. 2004;41:813-825. https://doi.org/10.1016/j.fgb.2004.04.005
  25. Berbee ML, Taylor JW. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data. Biosystems. 1992;28:117-125. https://doi.org/10.1016/0303-2647(92)90014-P
  26. Hansen K, LoBuglio KF, Pfister DH. Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA. Mol Phylogenet Evol. 2005;36:1-23. https://doi.org/10.1016/j.ympev.2005.03.010
  27. Lopandic K, Molnar O, Prillinger H. Application of ITS sequence analysis, RAPD and AFLP fingerprinting in characterising the yeast genus Fellomyces. Microbiol Res. 2005;160:13-26. https://doi.org/10.1016/j.micres.2004.09.005
  28. Weber J, Diez J, Selosse M-A, et al. SCAR markers to detect mycorrhizas of an American Laccaria bicolor strain inoculated in European Douglas-fir plantations. Mycorrhiza. 2002;12:19-27. https://doi.org/10.1007/s00572-001-0142-9
  29. Izumitsu K, Hatoh K, Sumita T, et al. Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience. 2012;53:396-401. https://doi.org/10.1007/S10267-012-0182-3
  30. Im CH, Kim M-K, Kim K-H, et al. Breeding of king oyster mushroom, Pleurotus eryngii with a high yield and earliness of harvest trait and its sensory test. Kor J Mycol. 2013;41:91-96. https://doi.org/10.4489/KJM.2013.41.2.91
  31. Shin P, Park Y, Yoo Y, et al. Characteristics and breeding of a new cultivar Pleurotus eryngii, Song-A. J Mushroom Sci Prod. 2011;9:59-62.
  32. Lee Y, Kim Y, Seuk S, et al. Mband characterization of a cultivar "DanBi 5Ho" with a long shelf life. J Mushrooms. 2016;14:64-69. https://doi.org/10.14480/JM.2016.14.2.64
  33. Burglin T. A comprehensive classification of homeobox genes. In: Duboule D, editor. Guidebook to the homeobox genes. Oxford: Oxford University Press; 1994. p. 25-27.
  34. Narayana N, Weiss MA. Crystallographic analysis of a sex-specific enhancer element: sequencedependent DNA structure, hydration, and dynamics. J Mol Biol. 2009;385:469-490. https://doi.org/10.1016/j.jmb.2008.10.041
  35. Kues U, Gottgens B, Stratmann R, et al. A chimeric homeodomain protein causes self-compatibility and constitutive sexual development in the mushroom Coprinus cinereus. EMBO J. 1994;13:4054-4059. https://doi.org/10.1002/j.1460-2075.1994.tb06722.x

Cited by

  1. Molecular Markers for Detecting a Wide Range of Trichoderma spp. that Might Potentially Cause Green Mold in Pleurotus eryngii vol.48, pp.4, 2019, https://doi.org/10.1080/12298093.2020.1785754