Fig. 1. Sensor module design
Fig. 2. Beam shaping optics design
Fig. 3. Telescope design
Fig. 4. Result of the telescope efficiency simulation
Fig. 5. Spectrograph module design
Fig. 6. Fiber bundle design
Fig. 7. Result of the indoor test
Fig. 8. Field test setup
Fig. 9. Result of the field test
Fig. 10. Comparison of Raman spectrum according to test conditions (a) MES, (b) PTFE
Table 1. Specifications of KrF excimer laser
Table 2. System requirements
참고문헌
- National Consortiumfor the Study of Terrorismand Responses to Terrorism(START), Global Terrorism Database [Data File], 2017. http://www.start.umd.edu/gtd
- K. L. Gares, K. T. Hufziger, S. V. Bykov and S. A. Asher, "Review of Explosive Detection Methodologies and the Emergence of Standoff Deep UV Resonance Raman," J. Raman Spectrosc., Vol. 47, pp. 124-141, Jan. 2016. https://doi.org/10.1002/jrs.4868
- J. J. Brady, S. D. Roberson, M. E. Farrell, E. L. Holthoff, D. N. Stratis-Cullum and P. M. Pellegrino, "Laser-induced Breakdown Spectroscopy: A Review of Applied Explosive Detection," ARMY RESEARCH LAB ADELPHI MD SENSORS AND ECLECTRON DEVICES DIRECTORATE, Sep. 2013.
- S. K. Choi, Y. S. Jeong, J. H. Lee and Y. C. Ha, "Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface," Journal of the Korea Institute of Military Science and Technology, Vol. 18, pp. 612-620, Oct. 2015. https://doi.org/10.9766/KIMST.2015.18.5.612
- F. Yan and T. Vo-Dinh, "Surface-enhanced Raman Scattering Detection of Chemical and Biological Agents Using a Portable Raman Integrated Tunable Sensor," Sens. Actuators B. Vol. 121, pp. 61-66, Jan. 2007. https://doi.org/10.1016/j.snb.2006.09.032
- A. J. Sedlacek, M. D. Ray, N. S. Higdon and D. A. Richter, "Short-range Noncontact Detection of Surface Contamination Using Raman Lidar," in Proc. of SPIE, Vol. 4577, pp. 95-104, Feb. 2002.
- W. F. Hug, R. Bhartia, A. Tsapin, A. Lane, P. Conrad, K. Sijapati and R.D. Reid, "Water and Surface Contamination Monitoring Using Deep UV Laser," in Proc. of SPIE, Vol. 6378, pp. 63780S-1-63780S-13, July. 2006.
- M. D. Ray and A. J. Sedlacek, "Mini-Raman Lidar System for Stand-off, In Situ Interrogation of Surface Contaminants," in Proc. of SPIE, Vol. 3707, pp. 138-147, Nov. 2013.
- Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee and Y. K. Kim, "Raman Spectrometer for Detection of Chemicals on Road," Korean Journal of Optics and Photonics, Vol. 28, pp. 16-121, June. 2017. https://doi.org/10.3807/KJOP.2017.28.1.016
- Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee and Y. K. Kim, "Development of an Ultraviolet Raman Spectrometer for Standoff Detection of Chemicals," Current Optics and Photonics, Vol. 1, pp. 247-251, June. 2017. https://doi.org/10.3807/COPP.2017.1.3.247
- S. T. Christesen, J. P. Jones, J. M. Lochner and A. M. Hyre, "Ultraviolet Raman Spectral and Cross-Sections of the G-series Nerve Agents," Applied Spectroscopy, Vol. 62, pp. 1078-1083, Nov. 2008. https://doi.org/10.1366/000370208786049024
- S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, "A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior," Crit. Rev. Environ. Sci. Technol., Vol. 38, pp. 112-136, Jan. 2008 https://doi.org/10.1080/10643380701643650
- Y. J. Koh, J. H. Lee, Y. S. Jeong and J. O. Lee, "Measurement of Raman Scattering Signals for Toxic Chemicals Using Deep UV Laser", The 118th General Meeting of the Korean Chemical Society, PHYS.P-371, Oct. 2016.
- R. D. Massaro, Y. Dai and E. B. Barojas, "Energetics and Vibrational Analysis of Methyl Salicylate Isomers," J. Phys. Chem. A. Vol. 113, pp. 10385-10390, Aug. 2009. https://doi.org/10.1021/jp905887m
- Y. H. Lee and S. Farquharson, "Rapid Chemical Agent Identification by Surface-enhanced Raman Spectroscopy," in Proc. of SPIE, Vol. 4378, pp. 21-26, Feb. 2001.
- A. J. Sedlacek, M. D. Ray and M. Wu, "Application of UV Raman Scattering to Non-traditional Standoff Chemical Detection," Trends Appl. Spectrosc, Vol. 5, pp. 19-38, 2004.
- C. K. Manka, S. Nikitin, R. Lunsford, P. Kunapareddy and J. Grun, "Wavelength-dependent Amplitude of Teflon Raman Lines," J. Raman Spectrosc., Vol. 42, pp. 685-690, Apr. 2011. https://doi.org/10.1002/jrs.2752
- J. O. Lee and Y. J. Koh, "Deep UV Raman Spectra of Chemical Agent Simulant by using 248 nm Laser In Open Fields," The 121 th General Meeting of the Korean Chemical Society, ORGN.P-417, Apr. 2018.