DOI QR코드

DOI QR Code

Transient Stability Enhancement of Power System by Using Energy Storage System

풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향

  • 서규석 (거제대학교 전기공학과)
  • Received : 2019.03.06
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

전력계통의 과도안정도를 향상시키기 위한 종래의 방법은 STATCOM(Static Synchronous Compensator), SVC(Static Var Compensator)와 같은 무효전력 보상장치를 이용하는 것이다. 하지만 무효전력 보상장치에 기반한 전통적인 방법은 대형 전동기의 트립에 의한 급격한 전압붕괴를 막을 수 없다. 반면에 에너지 저장시스템은 무효전력과 유효전력을 동시에 공급할 수 있다. 전력계통의 사고 시 유효전력의 빠른 공급은 과도안정도 향상에 매우 중요한 역할을 한다. 본 논문에서는 대형 전동기부하와 같은 큰 동적부하를 가지는 전력계통에 대하여 에너지저장시스템을 사용한 과도 안정도 향상방법을 제시한다. 또한 유효전력과 무효전력을 보상하는 방법이 기존의 방법보다 더 효과적으로 과도 안정도를 향상시킴을 확인하였다.

Keywords

SHGSCZ_2019_v20n6_592_f0001.png 이미지

Fig. 1. Modification of IEEE 14Bus test System

SHGSCZ_2019_v20n6_592_f0002.png 이미지

Fig. 2. Voltage Response with Wind-Turbine Generator at the BUS2

SHGSCZ_2019_v20n6_592_f0003.png 이미지

Fig. 3. Voltage Response with Wind-Turbine Generator at the BUS2 and ESS 100% Active Power Supply at the BUS14

SHGSCZ_2019_v20n6_592_f0004.png 이미지

Fig. 4. Voltage Response with SVC at the BUS14

SHGSCZ_2019_v20n6_592_f0005.png 이미지

Fig. 5. Voltage Response with Wind-Turbine Generator at the BUS3

SHGSCZ_2019_v20n6_592_f0006.png 이미지

Fig. 6. Voltage Response with Wind-Turbine Generator at the BUS3 and ESS 100% Active Power Supply at the BUS14

SHGSCZ_2019_v20n6_592_f0007.png 이미지

Fig. 7. Voltage Response with Wind-Turbine Generator at the BUS8

SHGSCZ_2019_v20n6_592_f0008.png 이미지

Fig. 8. Voltage Response with Wind-Turbine Generator at the BUS8 and ESS 60% Active Power Supply at the BUS14

Table 1. Simulation Results

SHGSCZ_2019_v20n6_592_t0001.png 이미지

References

  1. International Energy Agency, "Renewables", https://www.iea.org/topics/renewables/
  2. A. Chakraborty, S. K. Musunuri, A. K. Srivastava and A. K. Kondabathini, "Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application", Advance in Power Electronics, Vol. 2012. DOI: http://dx.doi.org/10.1155/2012/676010
  3. A. K. Srivastava, A. A. Kumar, and N. N. Schulz "Impact of Distributed Generations with Energy Storage Devices on the Electric Grid", IEEE Systemens Journal, Vol. 6, N0. 1, March 2012 DOI: http://dx.doi.org/10.1109/JSYST.2011.2163013
  4. X. P. Zhang, C. Rehtanz, and B. Pal, "Flexible AC Transmission Systems: Modelling and Control", Springer-Verlag Berlin Heidelberg 2006. DOI: https://doi.org/10.1007/978-3-642-28241-6
  5. Saeed Amini, Md. Taakoli, and Amin Hajizadeh, "Reactive Power Compensation in Wind Power Plant Using SVC and STATCOM", International Journal of Emerging Science and engineering. Vol. 2, Issue2, march 2014.
  6. "PSSE-32 Program Application Guide Vol. 1", Shaw Power Technologies Inc.
  7. "Power Systems Test Case Archive - IEEE 14 Bus Power Flow Test Cases", https://www.ee.washington.edu/research/pstca/
  8. Paul. M. Anderson and A. A. Fouad "Power System Control and Stability", IEEE Press, 1994. DOI: https://doi.org/10.1109/TSMC.1979.4310158