DOI QR코드

DOI QR Code

Develop physical layer analysis algorithm for OFDMA signal based IEEE 802.16e

IEEE 802.16e 기반 OFDMA 물리층 분석 알고리즘 연구

  • Received : 2019.02.25
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

We describe and anlayzes the methodology and implementation results of H / W configuration and signal characteristics analysis algorithm for analyzing equipment for analyzing OFDMA physical layer based on 802.16e. Recently, demand for signal analysis of instruments that analyze these signals with the development of digital communication signals is rapidly increasing. Accordingly, it is necessary to develop signal analysis equipment capable of analyzing characteristics of a broadband communication signal using a wideband digital signal processing module. In this paper, we have studied the basic theory of OFDMA in order to devise a device capable of analyzing characterisitcs of broadband communication signals. Second, the structure of OFDMA transmitter/receiver was examined. Third, a wideband digitizer was implemented. we design Wimax signal analysis algorithm based on OFDMA among broadband communication methods and propose Wimax physical layer analysis S/W implementation through I, Q signals. The IF downconverter used the receiver module and the LO generation module of the spectrum analyzer. Quantitative analysis result is obtained through the algorithm of Wimax signal analysis by I, Q data.

802.16e에 기반한 OFDMA 물리층 분석을 위한 분석 장비 개발에 있어, 하드웨어 구성 및 신호 특성 분석 알고리즘에 관한 방법론에 대해 기술하고 구현결과를 분석한다. 최근 디지털 통신 신호의 발달과 함께 이를 분석하는 계측기의 신호분석에 대한 수요도 빠르게 증가하고 있다. 신호분석에 대한 수요의 급속한 증가에 따라 광대역 디지털 신호처리 모듈을 이용한 광대역통신 신호 특성 분석이 가능한 신호분석 장비를 개발하는 것이 필요하다. 본 논문에서는 광대역통신 신호 특성 분석이 가능한 장비를 고안하기 위하여 첫째, OFDMA의 기본이론을 학습하고, 둘째 OFDMA 송/수신기 구조를 검토하였으며 셋째, 광대역 디지타이져를 구현하였다. 광대역 통신기법 중 OFDMA에 기반한 Wimax 신호분석 알고리즘을 설계하여 I, Q신호를 통한 Wimax 물리층 분석 SW구현을 제안하였다. IF다운 컨버터는 스펙트럼 분석기의 수신 모듈 및 LO발생 모듈을 이용하였으며, I, Q 데이터에 의한 WiMAX 신호분석 알고리즘을 통해 정량적 분석결과를 도출 하였다.

Keywords

SHGSCZ_2019_v20n6_342_f0001.png 이미지

Fig. 1. OFDMA frame structure on TDD mode

SHGSCZ_2019_v20n6_342_f0002.png 이미지

Fig. 2. Block diagram of OFDMA transmitter

SHGSCZ_2019_v20n6_342_f0003.png 이미지

Fig. 3. ISI with no cyclic prefix

SHGSCZ_2019_v20n6_342_f0004.png 이미지

Fig. 4. ISI with cyclic prefix

SHGSCZ_2019_v20n6_342_f0005.png 이미지

Fig. 5. OFDMA channel structure

SHGSCZ_2019_v20n6_342_f0006.png 이미지

Fig. 6. Block diagram of Transmitter and Receiver

SHGSCZ_2019_v20n6_342_f0007.png 이미지

Fig. 7. Block diagram of Digitizer H/W

SHGSCZ_2019_v20n6_342_f0008.png 이미지

Fig. 8. Block diagram of Digitizer Core

SHGSCZ_2019_v20n6_342_f0009.png 이미지

Fig. 9. Constellation diagram and EVM for QPSK signal

SHGSCZ_2019_v20n6_342_f0010.png 이미지

Fig. 10. Result for moving average

SHGSCZ_2019_v20n6_342_f0011.png 이미지

Fig. 11. Searching the symbol start point on OFDMA

SHGSCZ_2019_v20n6_342_f0012.png 이미지

Fig. 12. Result for extracting reference level

SHGSCZ_2019_v20n6_342_f0013.png 이미지

Fig. 13. Searching for symbol timing

SHGSCZ_2019_v20n6_342_f0014.png 이미지

Fig. 14. Result for FFT calculation

SHGSCZ_2019_v20n6_342_f0015.png 이미지

Fig. 15. Result for FFT Shift

SHGSCZ_2019_v20n6_342_f0016.png 이미지

Fig. 16. Value of amplitude compensation

SHGSCZ_2019_v20n6_342_f0017.png 이미지

Fig. 17. Value of phase compensation

SHGSCZ_2019_v20n6_342_f0018.png 이미지

Fig. 18. Before amplitude and phase compensation

SHGSCZ_2019_v20n6_342_f0019.png 이미지

Fig. 19. After amplitude and phase compensation

SHGSCZ_2019_v20n6_342_f0020.png 이미지

Fig. 20. EVM vs. Sub-carrier

SHGSCZ_2019_v20n6_342_f0021.png 이미지

Fig. 21. EVM vs. Symbol

SHGSCZ_2019_v20n6_342_f0022.png 이미지

Fig. 22. Test Block Diagram

SHGSCZ_2019_v20n6_342_f0023.png 이미지

Fig. 23. Test result for algorithm

SHGSCZ_2019_v20n6_342_f0024.png 이미지

Fig. 24. Test result with K Company VSA S/W

Table 1. Comparison for test result

SHGSCZ_2019_v20n6_342_t0001.png 이미지

References

  1. IEEE 802.16 Working Group Officers, "IEEE Standard for Local and metropolitan area networks,(IEEE 802.16e) " IEEE, 2006.
  2. K. Balachandran, D. Calin, "Design and Analysis of an IEEE 802.16e-Based OFDMA Communication System", Bell Labs Technical Journal Vol.11, No.4, pp.53-73 2007 DOI: https://doi.org/10.1002/bltj.20196
  3. W. H. Jung, D. H. Kim, "A Study of the Effects of MBS Zone Size and Target Cell Selection Algorithm in a Mobile WiMAX Network", Journal of Korea Institute of Information and Communication Engineering, Vol.9, no3, 2011.
  4. W. Henkel, G. Taubock, P. Odling, P.O. Borjesson, N. Petersson, "The Cyclic Prefix of OFDM/DMT, An Analysis", 2002 International Zurich Seminar on Broadband Communications Access, Feb. 2002 DOI: https://doi.org/10.1109/IZSBC.2002.991762
  5. J. H. Seo, H. W. Park, K. W. Shin, "A Design of Multi-Standard LDPC Decoder for WiMAX/WLAN ", Journal of the Korea Institute of Information and Communication Engineering, Vol. 17, No. 2, pp.363-371,Feb. 2013 DOI: https://doi.org/10.6109/jkiice.2013.17.2.363
  6. J. H. Seo, K. W. Shin, "LDPC Decoder for WiMAX/WLAN using Improved Normalized Min-Sum Algorithm", Journal of Korea Institute of Information and Communication Engineering, Vol.18, no4, 2014. DOI: https://doi.org/10.6109/jkiice.2014.18.4.876
  7. E. S. Kim, H. J. Kim, K. W. Shin, "A performance analysis of layered LDPC decoder for mobile WiMAX system ", Journal of the Korea Institute of Information and Communication Engineering, Vol. 15, No. 4, pp.921-929,April. 2011 DOI: https://doi.org/10.6109/jkiice.2011.15.4.921