DOI QR코드

DOI QR Code

Study on Modeling and Arrangement of Link-Shoes for Torsional Control of S-shaped Pedestrian Cable-Stayed Bridge

S자형 보도사장교의 비틀림 제어를 위한 링크슈의 모델링과 배치방법 연구

  • Ji, Seon-Geun (Department of Civil Engineering, University of Seoul)
  • 지선근 (서울시립대학교 토목공학과)
  • Received : 2019.03.12
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

Recently, cable-stayed bridges have been attempting to apply bold and experimental shapes for aesthetic and originality. In the case of bridges that have no similar cases, deep understanding and verification of analytical modeling is needed. S-shaped curved pedestrian cable-stayed bridge is always twisted because the cable is arranged on one side of the inverted triangular truss girder. In order to suppress the torsion, the Link-shoes are arranged at the left and right top members with reference to the Bearing placed at the mid-bottom member. The first research is related to the modeling method of Link-Shoe and Diaphram. In order to accurately reflect the transverse structural system and the torsional stiffness, it was necessary to model the Link-Shoe and the Diaphram directly rather than indirectly using the stiffness of the Bearing. The second study is related to the lateral arrangement of Bearing and Link-Shoes. Method 1 is to place in order of Link-shoe, Bearing, and Link-shoe from outside the curve radius. Method 2 is place to in order of Bearing, Bearing, and Link-shoe. In method 2, compared to method 1, the stress in the outer top member was larger and the stress in the inner one was decreased. It is analyzed that the stress adjustment is possible according to the lateral arrangement of Bearing and Link-Shoe.

최근 미관과 독창성을 위해서 과감하고 실험적인 형상을 적용한 사장교가 시도되고 있다. 기존에 유사한 사례가 없는 교량의 경우 해석 모델링에 대한 깊은 고민과 검증이 필요하다. S자형 곡선 보도사장교는 역삼각형 트러스 보강거더의 편측에 1면으로 케이블이 배치되어 상시 비틀림이 발생한다. 비틀림 억제를 위해서 중앙 하현재에 배치한 받침을 기준으로 좌, 우측의 상현재에 링크슈를 배치하였다. 첫 번째 연구는 링크슈의 모델링 방법과 격벽 모델링 유무에 관한 것이다. 지점부 횡방향 구조계와 비틀림 강성을 정확히 반영하기 위해서 받침의 회전강성을 이용하는 간접적인 방법이 아닌 링크슈와 격벽을 직접 모델링하는 것이 필요하였다. 두번째 연구는 압축전담 요소인 받침과 인장전담 요소인 링크슈의 횡방향 배치방법에 관한 것이다. 방법1은 곡선반경 외측에서부터 링크슈, 받침, 링크슈의 순서로 배치하는 것이고, 방법2는 받침, 받침, 링크슈로 배치하는 방법이다. 방법2는 방법1과 비교하여 외측 상현재의 응력은 커지고 내측 상현재의 응력은 감소하였다. 받침과 링크슈의 횡방향 배치방법에 따라 상현재의 응력 조정이 가능한 것으로 분석되었다.

Keywords

SHGSCZ_2019_v20n6_210_f0001.png 이미지

Fig. 1. Outline of Frame Modeling for Straight CBS

SHGSCZ_2019_v20n6_210_f0002.png 이미지

Fig. 2. Outline Of Bridge Plans for S-Shaped Pedestrian CBS

SHGSCZ_2019_v20n6_210_f0003.png 이미지

Fig. 3. Torsion Direction of Girder without Cable

SHGSCZ_2019_v20n6_210_f0004.png 이미지

Fig. 4. Arrangement of Bearing and Link-Shoe

SHGSCZ_2019_v20n6_210_f0005.png 이미지

Fig. 5. Analysis Modeling

SHGSCZ_2019_v20n6_210_f0006.png 이미지

Fig. 6. Analysis modeling for Link-Shoe

SHGSCZ_2019_v20n6_210_f0007.png 이미지

Fig. 7. Cable Force of Method1, Method2, Method3

SHGSCZ_2019_v20n6_210_f0008.png 이미지

Fig. 8. Beam Stress Diagram

SHGSCZ_2019_v20n6_210_f0009.png 이미지

Fig. 9. Pattern Diagram

SHGSCZ_2019_v20n6_210_f0010.png 이미지

Fig. 10. Free Body Diagram

SHGSCZ_2019_v20n6_210_f0011.png 이미지

Fig. 11. Arrangement of Spring for Bearing and Link-Shoe

Table 1. Direction of Torsion Deformation

SHGSCZ_2019_v20n6_210_t0001.png 이미지

Table 2. Direction of Torsion Deformation

SHGSCZ_2019_v20n6_210_t0002.png 이미지

Table 3. Stiffness of Elastic-Link of Method 1

SHGSCZ_2019_v20n6_210_t0003.png 이미지

Table 4. Stiffness of Elastic-Link of Method 2, 3

SHGSCZ_2019_v20n6_210_t0004.png 이미지

Table 5. Result Force of Link-Shoe and Bearing

SHGSCZ_2019_v20n6_210_t0005.png 이미지

Table 6. Eigenvalue Analysis

SHGSCZ_2019_v20n6_210_t0006.png 이미지

Table 7. Stress of Girder

SHGSCZ_2019_v20n6_210_t0007.png 이미지

Table 8. Arrangement of Tension Only and Compression Only Spring for Method1, 2, 3

SHGSCZ_2019_v20n6_210_t0008.png 이미지

Table 9. Stiffness of Elastic-Link of Method 1,2,3

SHGSCZ_2019_v20n6_210_t0009.png 이미지

Table 10. Result Force of Link-Shoe and Bearing

SHGSCZ_2019_v20n6_210_t0010.png 이미지

Table 11. Stress of Girder

SHGSCZ_2019_v20n6_210_t0011.png 이미지

References

  1. J. S. Kim, Wind Stability of Cable-Stayed Bridge Considering the Construction Sequences, Doctor's thesis, University of Seoul, Seoul, Korea, pp.80-157, 2005.
  2. S. H. Kim, Wind Analysis of Cable-Stayed Bridge Considering Aerodynamic Admittance Function, Doctor's thesis, University of Seoul, Seoul, Korea, pp.111-209, 2011.
  3. B. C. Kim, Buffeting Response of Cable-stayed Bridge using 3-Dimensional Computational Fluid Dynamics, Doctor's thesis, University of Seoul, Seoul, Korea, pp.104-155, 2013.
  4. J. H. Jung, Analsis of symmetric or non-symmetric cable-stayed bridges, Doctor's thesis, University of Seoul, Seoul, Korea, pp.60-104, 2003.
  5. S. S. Yhim, "Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges", Journal of The Korea Institute for Structural Maintenance and Inspection, Vol.9, No.2, pp. 137-146, Apr. 2005
  6. Y. J. Lee, B. C. Lho, C. K. Kim, S. W. Bae, "A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.18, No.5, pp. 87-95, Sept. 2014 DOI: http://dx.doi.org/10.11112/jksmi.2014.18.5.087
  7. G. Y. Kim, D. W. Seo, "Structural Safety Evaluation of Cable Stayed Bridge based on Cable Damage Scenarios", Journal of the Korea Academia-Industrial cooperation Society, Vol.19, No.7, pp. 105-111, Jul. 2018 DOI: http://doi.org/10.5762/KAIS.2018.19.7.105
  8. E. R. Kim, "Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge", Journal of the Korea Academia-Industrial cooperation Society, Vol.19, No.1, pp. 127-135, Jan. 2018 DOI: http://doi.org/10.5762/KAIS.2018.19.1.127
  9. H. J. Lee, "Study on the Efficient Application of Vision-Based Displacement Measurements for the Cable Tension Estimation of Cable-Stayed Bridges", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.9, pp. 709-717, Sept. 2016 DOI: http://doi.org/10.5762/KAIS.2016.17.9.709
  10. S. G. Ji, Lateral Behaviors of U-type Concrete Pylon in Cable Stayed Bridge, Master's thesis, University of Seoul, Seoul, Korea, pp.16-33, 2016
  11. Y. S. Na, Structural Stability of S-type Pedestrian-CSB due to Tension Change of Backstay Cables, Master's thesis, University of Seoul, Seoul, Korea, pp.40-69, 2018
  12. Niels J. Gimsing, Cable Supported Bridges. p.165-239, A John Wiley & Sons Publication, 2012.