Figure 2. XPS survey spectra of the pristine CNT and CNT-TiO2/Ag.
Figure 4. Representative Nyquist plots of P25, CNT-TiO2, and CNT-TiO2/Ag recorded in 30 ppm Rh. B solution at 0.2 VSCE, respectively.
Scheme 1. Possible photocatalysis mechanism for CNT-TiO2/Ag nanoparticles under UV light illumination.
Figure 1. (a) TEM image of pristine CNT, with corresponding EDX spectrum (inset). (b) TEM image of CNT-TiO2/Ag, with the corresponding EDX spectrum (inset).
Figure 3. (a) Variation of UV-visible spectra of Rh. B solution in presence of CNT-TiO2/Ag under UV-vis irradiation, with corresponding Rh. B solution color-change sequence (inset). (b) The relationship between Ct/C0 plot of photocatalytic degradation of P25, CNT-TiO2 and CNT-TiO2/Ag. C0 and Ct are the initial dye concentration and the concentration at reaction time t, respectively.
References
- Huang, Y.; Fan, W.; Long, B.; Li, H.; Zhao, F.; Liu, Z.; Tong, Y.; Ji, H. Appl. Catal. B: Environ. 2016, 185, 68. https://doi.org/10.1016/j.apcatb.2015.11.043
- Zeng, T.; Zhang, X.; Wang, S.; Niu, H.; Cai, Y. Environ. Sci. Technol. 2015, 49, 2350. https://doi.org/10.1021/es505014z
- Kovalova, L.; Knappe, D. R. V.; Lehnberg, K.; Kazner, C.; Hollender, J. Environ. Sci. Pollut. Res. 2013, 20, 3607. https://doi.org/10.1007/s11356-012-1432-9
- Liu, S.; Pan, G.; Yang, H.; Cai, Z.; Zhu, F.; Ouyang, G. Anal. Chim. Acta 2019, 1054, 17. https://doi.org/10.1016/j.aca.2018.12.011
- Murray, K. E.; Thomas, S. M.; Bodour, A. A. Environ. Pollut. 2010, 158, 3462. https://doi.org/10.1016/j.envpol.2010.08.009
- Richardson, S. D. Anal. Chem. 2009, 81, 4645. https://doi.org/10.1021/ac9008012
- Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. https://doi.org/10.1038/nature06599
- Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; Gunten, U. V.; Wehrli, B. Science 2006, 313, 1072. https://doi.org/10.1126/science.1127291
- Qian, F.; He, M.; Wu, J.; Yu. H.; Duan, L. J. Environ. Sci. 2019, 76, 329. https://doi.org/10.1016/j.jes.2018.05.025
- Meinel, F.; Ruhl, A. S.; Sperlich, A.; Zietzschmann, F.; Jekel, M. Water Air Soil. Poll. 2015, 226, 2260. https://doi.org/10.1007/s11270-014-2260-y
- Xing, Z.; Zhang, J.; Cui, J.; Yin, J.; Zhao, T.; Kuang, J.; Xiu, Z.; Wan, N.; Zhou, W. Appl. Catal. B: Environ. 2018, 225, 452. https://doi.org/10.1016/j.apcatb.2017.12.005
- Hussain, M.; Akhter, P.; Saracco, G.; Russo, N. Appl. Catal. B: Environ. 2015, 170-171, 53. https://doi.org/10.1016/j.apcatb.2015.01.007
- Chen, L.; Xie, L.; Wang, M.; Ge, X. J. Mater. Chem. A 2015, 3, 2991. https://doi.org/10.1039/C4TA05898D
- Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. https://doi.org/10.1039/C3CS60378D
- Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Savan, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. J. Am. Chem. Soc. 2012, 134, 15033. https://doi.org/10.1021/ja305603t
- Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. https://doi.org/10.1021/ja302846n
- Xie, Y. P.; Liu, G.; Yin, L.; Cheng, H.-M. J. Mater. Chem. 2012, 22, 6746. https://doi.org/10.1039/c2jm16178h
- Luo, X.; Liu, F.; Li, X.; Gao, H.; Liu, G. Mat. Sci. Semicon. Proc. 2013, 16, 1613. https://doi.org/10.1016/j.mssp.2013.04.005
- Liu, H.; Joo, J. B.; Dahl, M.; Fu, L.; Zeng, Z.; Yin, Y. Energy Environ. Sci. 2015, 8, 286. https://doi.org/10.1039/C4EE02618G
- Chen, J.; Qiu, F.; Xu, W.; Cao, S.; Zhu, H. J. Appl. Catal. A Gen. 2015, 495, 131. https://doi.org/10.1016/j.apcata.2015.02.013
- Maeda, K. Catal. Sci. Technol. 2014, 4, 1949. https://doi.org/10.1039/C4CY00251B
- Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
- Lei, C.-X.; Feng, Z.-D.; Zhou, H. Electrochim. Acta 2012, 68, 134. https://doi.org/10.1016/j.electacta.2012.02.052
- Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobio. C 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
- Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
- Kim, S. P.; Choi, M. Y.; Choi, H. C. Appl. Surf. Sci. 2015, 357, 302. https://doi.org/10.1016/j.apsusc.2015.09.044
- Gao, P.; Sun, D. D. Appl. Catal. B: Environ. 2014, 147, 888. https://doi.org/10.1016/j.apcatb.2013.10.025
- Dai, K.; Zhang, X.; Fan, K.; Peng, T.; Wei, B. Appl. Surf. Sci. 2013, 270, 238. https://doi.org/10.1016/j.apsusc.2013.01.010
- Kumar, P.; Varma, S.; Jain, S. L. J. Mater. Chem. A 2014, 2, 4514. https://doi.org/10.1039/c3ta14783e
- Zhao, Y.; Qiu, X.; Burda, C. Chem. Mat. 2008, 20, 2629. https://doi.org/10.1021/cm703043j
- Xue, J.; Elbanna, O.; Kim, S.; Fujitsuka, M.; Majima, T. Chem. Commun. 2018, 54, 6052. https://doi.org/10.1039/C8CC02853B
- Han, T.; Wang, H.; Zheng, X. RSC Adv. 2016, 6, 7829. https://doi.org/10.1039/C5RA25337C
- Bian, Z.; Tachikawa, T.; Kim, W.; Choi, W.; Majima, T. J. Phys. Chem. C 2012, 116, 25444. https://doi.org/10.1021/jp309683f
- Kasap, S. O. Principles of Electronic Materials and Devices, 2nd ed.; McGraw-Hill: New York, 2002; p 329.
- Shrestha, N. K.; Yang, M.; Nah, Y.-C.; Paramasivam, I.; Schmuki, P. Electrochem Commun. 2010, 12, 254. https://doi.org/10.1016/j.elecom.2009.12.007
- Zhang, S.; Peng, F.; Wang, H.; Yu, H.; Zhang, S.; Yang, J.; Zhao, H. Catal. Commun. 2011, 12, 689. https://doi.org/10.1016/j.catcom.2011.01.001
- Kim, H.-S.; Kim, J. D.; Choi, H. C.; Lee, S. Molecular Catalysis 2017, 441, 21. https://doi.org/10.1016/j.mcat.2017.07.015
- Kim, S. P.; Choi, H. C. Sensors and Actuators B 2015, 207, 424. https://doi.org/10.1016/j.snb.2014.10.029