DOI QR코드

DOI QR Code

Immobilization of Alcohol Dehydrogenase in Membrane: Fouling Mechanism at Different Transmembrane Pressure

  • Received : 2019.02.19
  • Accepted : 2019.04.20
  • Published : 2019.08.20

Abstract

Alcohol dehydrogenase (ADH) (EC 1.1.1.1) was selected as the enzyme which will be immobilized on ultrafiltration membrane by fouling with different transmembrane pressure of 1, 2 and 3 bars. ADH will catalyze formaldehyde (CHOH) to methanol ($CH_3OH$) and simultaneously oxidized nicotinamide adenine dinucleotide (NADH) to $NAD^+$. The concentration of enzyme and pH are fixed at 0.1 mg/ml and pH 7.0 respectively. The objective of the study focuses on the effect of different transmembrane pressure (TMP) on enzyme immobilization in term of permeate flux, observed rejection, enzyme loading and fouling mechanism. The results showed that at 1 bar holds the lowest enzyme loading which is 1.085 mg while 2 bar holds the highest enzyme loading which is 1.357 mg out of 3.0 mg as the initial enzyme feed. The permeate flux for each TMP decreased with increasing cumulative permeate volume. The observed rejection is linearly correlated with the TMP where increase in TMP will cause a higher observed rejection. Hermia model predicted that at irreversible fouling with standard blocking dominates at TMP of 3 bar, while cake layer and intermediate blocking dominates at 1 and 2 bar respectively.

Keywords

JCGMDC_2019_v63n4_260_f0001.png 이미지

Figure 1. Pristine membrane permeability at different TMP.

JCGMDC_2019_v63n4_260_f0002.png 이미지

Figure 2. Permeate flux trend during immobilization with different TMP.

JCGMDC_2019_v63n4_260_f0003.png 이미지

Figure 3. Effect of different TMP on membrane observed rejection.

JCGMDC_2019_v63n4_260_f0004.png 이미지

Figure 4. Linear fitting results of experimental permeate flux at different transmembrane pressure according to fouling model by Hermia.

Table 1. Description of four empirical models by Hermia

JCGMDC_2019_v63n4_260_t0001.png 이미지

Table 2. Characteristics of ultrafiltration membrane used in the study

JCGMDC_2019_v63n4_260_t0002.png 이미지

Table 3. Water permeability of pristine membrane at different transmembrane pressure

JCGMDC_2019_v63n4_260_t0003.png 이미지

Table 4. Enzyme loading percentage after immobilization on membrane at different TMP

JCGMDC_2019_v63n4_260_t0004.png 이미지

Table 5. Values of R2 from the model fitting accuracy for the ultrafiltration of ADH solutions at 1, 2 and 3 bar

JCGMDC_2019_v63n4_260_t0005.png 이미지

References

  1. Marpani, F.; Luo, J.; Mateiu, R. V.; Meyer, A. S.; Pinelo, M. ACS Appl. Mater. Interfaces 2015, 7, 17682. https://doi.org/10.1021/acsami.5b05529
  2. Jochems, P.; Satyawali, Y.; Diels, L.; Dejonghe, W. Green Chem. 2011, 13, 1609. https://doi.org/10.1039/c1gc15178a
  3. Li, Y.; Wang, H.; Lu, J.; Chu, A.; Zhang, L.; Ding, Z.; Xu, S.; Gu, Z.; Shi, G. Bioresour. Technol. 2019, 274, 9. https://doi.org/10.1016/j.biortech.2018.11.075
  4. Xu, Y.; Lin, Y.; Chew, N. G. P.; Malde, C.; Wang, R. J. Membrane Sci. 2019, 572, 532. https://doi.org/10.1016/j.memsci.2018.11.043
  5. Jun, L. Y.; Mubarak, N. M.; Yon, L. S.; Bing, C. H.; Khalid, M.; Jagadish, P.; Abdullah, E. C. Scientific Reports 2019, 9, 1. https://doi.org/10.1038/s41598-018-37186-2
  6. Hilal, N.; Kochkodan, V.; Nigmatullin, R.; Goncharuk, V.; Al-Khatib, L. J. Membrane Sci. 2006, 268, 198. https://doi.org/10.1016/j.memsci.2005.06.039
  7. Yurekli, Y.; Altinkaya, S. A. J. Mol. Catal. B Enzym. 2011, 71, 36. https://doi.org/10.1016/j.molcatb.2011.03.006
  8. Zhang, L.; Su, Y.; Zheng, Y.; Jiang, Z.; Shi, J.; Zhu; Y.; Jian, Y. Bioresour. Technol. 2010, 101, 9144. https://doi.org/10.1016/j.biortech.2010.07.001
  9. Salahi, A.; Abbasi, M.; Mohammadi, T. Desalination 2010, 251, 153. https://doi.org/10.1016/j.desal.2009.08.006
  10. Cancino-Madariaga, B.; Ruby, R.; Astudillo Castro, C.; Saavedra Torrico, J.; Lutz Riquelme, M. Ind. Eng. Chem. Res. 2012, 51, 4017. https://doi.org/10.1021/ie201921x
  11. Huang, J. Desalination 2014, 335, 1. https://doi.org/10.1016/j.desal.2013.11.038
  12. Cordova, A.; Astudillo, C.; Guerrero, C.; Vera, C.; Illanes, A. Desalination 2016, 393, 79. https://doi.org/10.1016/j.desal.2015.12.020
  13. Methot-Hains, S.; Benoit, S.; Bouchard, C.; Doyen, A.; Bazinet, L.; Pouliot, Y. J. Dairy Sci. 2016, 99, 8655. https://doi.org/10.3168/jds.2016-11504
  14. Luo, J.; Marpani, F.; Brites, R.; Frederiksen, L.; Meyer, A. S.; Jonsson, G.; Pinelo, M. J. Memb. Sci. 2014, 459, 1. https://doi.org/10.1016/j.memsci.2014.01.065
  15. Hermia, J. Trans. Inst. Chem. Eng. 1982, 60, 183.
  16. Luo, J.; Meyer, A. S.; Jonsson, G.; Pinelo, M. Biochem. Eng. J. 2014, 83, 79. https://doi.org/10.1016/j.bej.2013.12.007
  17. Choi, S. W.; Yoon, J. Y.; Haam, S.; Jung, J. K.; Kim, J. H.; Kim, W. S. J. Colloid Interface Sci. 2000, 228, 270. https://doi.org/10.1006/jcis.2000.6940
  18. Chang, E. E; Yang, S. Y.; Huang, C. P.; Liang, C. H.; Chiang, P. C. Sep. Purif. Technol. 2011, 79, 329. https://doi.org/10.1016/j.seppur.2011.03.017
  19. Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zheng, Y.; Zhang, Z. Bioresour. Technol. 2018, 250, 398. https://doi.org/10.1016/j.biortech.2017.11.036

Cited by

  1. Biocatalytic Reduction of Formaldehyde to Methanol: Effect of pH on Enzyme Immobilization and Reactive Membrane Performance vol.16, pp.3, 2019, https://doi.org/10.9767/bcrec.16.3.10568.472-480