DOI QR코드

DOI QR Code

A Study on the New Development for Determination of Dead Time in GC-OTC/FID

GC-OTC/FID에서 Dead Time 결정을 위한 새로운 방법 개발에 대한 연구

  • Received : 2018.12.06
  • Accepted : 2019.05.18
  • Published : 2019.08.20

Abstract

In the system of GC-OTC/FID (Gas chromatography-Open Tubular Column/Flame Ionization Detector), DMSO (Dimethyl sulfide) solvent was used to separate the polar solvents (Alcohols). In this system DMSO was eluted later than the separated polar solvents. At this system to calculate chromatographic factors [adjusted retention time ($t_R^{\prime}=t_R-t_O$), capacity factor{$k^{\prime}=(t_R-t_O)/t_O$} and separation factor {${\alpha}=(t_{R2}-t_O)/(t_{R1}-t_O)$}], dead time($t_O$) is necessary, but the method to calculate it has not been reported yet. Therefore, we have tried to develop $t_O$. To calculate $t_O$, we conversed DMSO retention time (DMSO $t_R$) to logarithm ($f(x)={\log}\;t_{R(DMSO)}{\rightarrow}t_O$, $t_O={\log}$ 9.551=0.980). To confirm the optimization of the developed method, we compared with $CH_4\;t_R$ and ${\ln}\;t_{R(DMSO)}$. Both of the values calculated by $CH_4\;t_R$ and ${\ln}\;t_{R(DMSO)}$ were not suitable in the calculation k' and ${\alpha}$. The developed method in this study{${\log}\;t_{R(DMSO)}$} has satisfied both of the values k' criteria (1${\alpha}(1<{\alpha}<2)$. The developed calculation method in this study was easy and convenient, therefore it can be expected to be applied to these similar systems.

GC-OTC/FID(Gas chromatography-Open Tubular Column/Flame Ionization Detector) 계에서 극성 용매(Alcohols)를 분리 하기 위하여 DMSO(Dimethyl sulfoxide)를 사용하였다. 이 계에서는 극성 용매들 보다 DMSO가 늦게 용출이 된다. 이런 계에서 크로마토그래픽 인자인 조정된 머무름 시간($t_R^{\prime}=t_R-t_O$)과 용량 인자{$k^{\prime}=(t_R-t_O)/t_O$} 및 분리 인자{${\alpha}=(t_{R2}-t_O)/(t_{R1}-t_O)$}를 구하기 위하여 불감시간($t_O$)이 필요하다. 그러나 이런 계에서 $t_O$ 를 구하기 위한 보고가 현재까지 된 바가 없기 때문에, 본 연구에서는 $t_O$ 를 구하는 방법을 개발하고자 하였다. $t_O$ 를 계산하기 위하여 DMSO의 머무름 시간($DMSO\;t_R$)을 상용로그로 전환하였다($f(x)={\log}\;t_{R(DMSO)}{\rightarrow}t_O$, $t_O={\log}$ 9.551=0.980). 개발된 방법의 적합 여부를 확인하기 위하여 $CH_4$$t_R$${\ln}\;t_{R(DMSO)}$${\log}\;t_{R(DMSO)}$와 비교하였다. 세 가지 방법 중 $CH_4\;t_R$${\ln}\;t_{R(DMSO)}$는 k' 과 ${\alpha}$를 계산하는데 적합하지 않았다. 본 연구에서 개발한 방법인 ${\log}\;t_{R(DMSO)}$는 일반적인 기준인 k'(1${\alpha}(1<{\alpha}<2)$를 만족하였다. 본 연구에서 개발한 계산방법은 쉽고 편리하기 때문에, 이와 유사한 계에서도 활용될 것으로 기대된다.

Keywords

JCGMDC_2019_v63n4_246_f0001.png 이미지

Figures 1. Chromatogram of CH4, methanol, ethanol, isopropanol and DMSO.

JCGMDC_2019_v63n4_246_f0002.png 이미지

Figures 2. Chromatogram of CH4, and DMSO

Table 1. The unretained markers used to gas and liquid chromatography

JCGMDC_2019_v63n4_246_t0001.png 이미지

Table 2. Each retention time of CH4, methanol, ethanol, isopropanol, and DMSO

JCGMDC_2019_v63n4_246_t0002.png 이미지

Table 3. Repeatability for alcohol standard solution

JCGMDC_2019_v63n4_246_t0003.png 이미지

Table 4. Comparison of tR', k' and α value according to CH4 tR, ln tR(DMSO) and log tR(DMSO)

JCGMDC_2019_v63n4_246_t0004.png 이미지

Table 5. Comparison of tR', k' and α according to mobile phase change

JCGMDC_2019_v63n4_246_t0005.png 이미지

Table 6. Comparison of tR', k' and α according to mobile phase change

JCGMDC_2019_v63n4_246_t0006.png 이미지

References

  1. Watanachaiyong, T.; Jeyashoke, N.; Krisnangkura, K. J. Chromatogr. Sci. 2000, 38, 67. https://doi.org/10.1093/chromsci/38.2.67
  2. Quintanilla-Lopez, J. E.; Lebron-Aguilar, R.; Garcia-Dominguez, J. A. J. Chromatogr. A 1997, 767, 127. https://doi.org/10.1016/S0021-9673(96)01033-3
  3. Hinshaw, J. V. LC GC N. Am. 2015, 11, 850.
  4. Touabet, A.; Badjah Hadj Ahmed, A. Y.; Maeck, M.; Meklati, B. Y. J. High. Resolut. Chromatogr. 1986, 9, 456. https://doi.org/10.1002/jhrc.1240090808
  5. Smith, R. J.; Haken, J. K.; Wainwright, M. S. J. Chromatogr. A 1985, 334, 95. https://doi.org/10.1016/S0021-9673(00)80268-X
  6. Smith, R. J.; Haken, J. K.; Wainwright, M. S.; Madden, B. G. J. Chromatogr. A 1985, 328, 11. https://doi.org/10.1016/S0021-9673(01)87373-8
  7. Colin F. Poole, The Essence of Chromatography; Elsevier: 2003; p 140.
  8. Gonzales, F. R. J. Chromatogr. A 1999, 832, 165. https://doi.org/10.1016/S0021-9673(98)00991-1
  9. Gastello, G.; Vezzani, S.; Moretti, P. J. Chromatogr. A 1994, 677, 95. https://doi.org/10.1016/0021-9673(94)80549-0
  10. Frank M. D. Whitman College, Chromatographic Theory (section1.2); 2008.
  11. Smith, R. J.; Nieass. C. S.; Wainwright, M. S. J. Liq. Chromatogr. 1986, 9, 1387. https://doi.org/10.1080/01483918608076694
  12. www.CHROMacademy. com, Theory of HPLC Chromatographic Parameters, 3-8.
  13. Snyder, L. R.; Kirkland, J. J. Introduction to Modern Liquid Chromatography, 2nd ed.; John Wiley & Sons: Chap. 2, 1979; p 24.
  14. Oh, D. S.; Kim, S. S.; Lee, S.; Hwang, K. C. J. Korean Soc. Occup. Environ. Hyg. 2016, 26, 20. https://doi.org/10.15269/JKSOEH.2016.26.1.20
  15. Analytical method validation guideline, https://webcache.googleusercontent.com/search?q=cache:iGp05FtY1QcJ: https://www.editage.co.kr/insights/guidelines-for-analyticalmethod-validation-how-to-avoid-irreproducible-results-andretractions+&cd=1&hl=ko&ct=clnk&gl=kr
  16. Ambrus, L. J. Chromtogr. A 1984, 294, 328. https://doi.org/10.1016/S0021-9673(01)96138-2
  17. CDER (Center for Drug Evaluation and Research), U.S. Food and Drug Administration. Reviewer Guidance, Validation of Chromatographic Methods; FDA, Rockville, MD; Nov 1994.