DOI QR코드

DOI QR Code

Ab Initio Studies of Hydrogen Bihalide Anions: Anharmonic Frequencies and Hydrogen-Bond Energies

  • Received : 2019.03.26
  • Accepted : 2019.05.04
  • Published : 2019.08.20

Abstract

Hydrogen bihalide anions, $XHX^-$ (X = F, Cl, and Br) have been studied by high level ab initio methods to determine the molecular structure, vibrational frequencies, and energetics of the anions. All bihalide anions are found to be of linear and symmetric structures, and the calculated bond lengths are consistent with experimental data. The harmonic frequencies exhibit large deviations from the experimental frequencies, suggesting the vibrations of these anions are very anharmonic. Two different approaches, the VSCF and VPT2 methods, are employed to calculate the anharmonic frequencies, and the results are compared with the experimental frequencies. While the ${\nu}_1$ and ${\nu}_2$ frequencies are in reasonable agreement with the experimental values, the ${\nu}_3$ and ${\nu}_1+{\nu}_3$ frequencies still exhibit large deviations. The hydrogen-bond energies and enthalpies are calculated at various levels including the W1BD and G4 composite methods. The hydrogen-bond enthalpies calculated are in good agreement with the experimental values.

Keywords

Table 1. Optimized geometries and vibrational frequencies of hydrogen bihalide anions, XHX with X = F, Cl, and Br

JCGMDC_2019_v63n4_237_t0001.png 이미지

Table 2. Anharmonic frequencies of FHF

JCGMDC_2019_v63n4_237_t0002.png 이미지

Table 3. Anharmonic frequencies of ClHCl

JCGMDC_2019_v63n4_237_t0003.png 이미지

Table 4. Anharmonic frequencies of BrHBr

JCGMDC_2019_v63n4_237_t0004.png 이미지

Table 5. Bonding energy ΔE0 and enthalpy ΔH298 of XHX with X = F, Cl, and Br in kcal/mol

JCGMDC_2019_v63n4_237_t0005.png 이미지

References

  1. (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, U. K., 1997;
  2. (b) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer, Berlin, Germany, 1991.
  3. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, U. K., 1999.
  4. Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: Oxford, U. K., 1997.
  5. Hadzi, D. Ed.; Theoretical Treatments of Hydrogen Bonding; Wiley: Chichester, U. K., 1997.
  6. Wenthold, P. G.; Squires, R. R. J. Phys. Chem. 1995, 99, 2002. https://doi.org/10.1021/j100007a034
  7. (a) Neumark, D. M. Acc. Chem. Res. 1993, 26, 33; https://doi.org/10.1021/ar00026a001
  8. (b) Neumark, D. M. Phys. Chem. Chem. Phys. 2005, 7, 433. https://doi.org/10.1039/b417886f
  9. (a) Ault, B. S. J. Phys. Chem. 1978, 82, 844; https://doi.org/10.1021/j100496a018
  10. (b) McDonald, S. A.; Andrews, L. J. Chem. Phys. 1979, 70, 3134; https://doi.org/10.1063/1.437805
  11. (c) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1987, 87, 6819. https://doi.org/10.1063/1.453376
  12. (a) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1986, 84, 2953; https://doi.org/10.1063/1.450276
  13. (b) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1987, 87, 6838. https://doi.org/10.1063/1.453378
  14. (a) Spirko, V.; Diercksen, G. H. F.; Sadlej, A. J.; Urban, M. Chem. Phys. Lett. 1989, 161, 519; https://doi.org/10.1016/0009-2614(89)87032-0
  15. (b) Spirko, V.; Cejchan, A.; Diercksen, G. H. F. Chem. Phys. 1991, 151, 45; https://doi.org/10.1016/0301-0104(91)80005-3
  16. (c) Yamashita, K.; Morokuma, K.; Leforestier, C. J. Chem. Phys. 1993, 99, 8848; https://doi.org/10.1063/1.465553
  17. (d) Spirko, V.; Sindelka, M.; Shirsat, R. N.; Leszczynski, J. Chem. Phys. Lett. 2003, 376, 595. https://doi.org/10.1016/S0009-2614(03)01036-4
  18. (a) Elghobash, N.; Gonzalez, L. J. Chem. Phys. 2006, 124, 174308; https://doi.org/10.1063/1.2191042
  19. (b) Hirata, S.; Miller, E. B.; Ohnishi, Y.; Yagi, K. J. Phys. Chem. A 2009, 113, 12461. https://doi.org/10.1021/jp903375d
  20. Del Bene, J. E.; Jordan, M. J. T. Spectrochim. Acta A 1999, 55, 719. https://doi.org/10.1016/S1386-1425(98)00273-X
  21. (a) Swalina, C.; Hammes-Schiffer, S. J. Phys. Chem. A 2005, 109, 10410; https://doi.org/10.1021/jp053552i
  22. (b) Hirata, S.; Yagi, K.; Perera, S. A.; Yamazaki, S.; Hirao, K. J. Chem. Phys. 2008, 128, 214305. https://doi.org/10.1063/1.2933284
  23. (a) Rasanen, M.; Seetula, J.; Kunttu, H. J. Chem. Phys. 1993, 98, 3914; https://doi.org/10.1063/1.464018
  24. (b) Lignell, A.; Khriachtchev, L.; Mustalampi, H.; Nurminen, T.; Rasanen, M. Chem. Phys. Lett. 2005, 405, 448. https://doi.org/10.1016/j.cplett.2005.02.080
  25. (a) Forney, D.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1995, 103, 1755; https://doi.org/10.1063/1.469749
  26. (b) Legay-Sommaire, N.; Legay, F. Chem. Phys. Lett. 1999, 314, 40; https://doi.org/10.1016/S0009-2614(99)01120-3
  27. (c) Fridgen, T. D.; Zhang, X. K.; Parnis, J. M.; March, R. E. J. Phys. Chem. A 2000, 104, 3487. https://doi.org/10.1021/jp993162u
  28. Kawaguchi, K. J. Chem. Phys. 1988, 88, 4186. https://doi.org/10.1063/1.453825
  29. (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1985, 122, 127; https://doi.org/10.1016/0166-1280(85)80036-1
  30. (b) Botschwina, P.; Sebald, P.; Burmeister, R. J. Chem. Phys. 1988, 88, 5246; https://doi.org/10.1063/1.454579
  31. (c) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1989, 91, 3539. https://doi.org/10.1063/1.456885
  32. (a) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1971, 55, 2550; https://doi.org/10.1063/1.1676447
  33. (b) Lugez, C. L.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1996, 105, 3901. https://doi.org/10.1063/1.472262
  34. (a) Pivonka, N. L.; Kaposta, C.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2002, 117, 6493; https://doi.org/10.1063/1.1506308
  35. (b) Pivonka, N. L.; Kaposta, C.; Brummer, M.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2003, 118, 5275. https://doi.org/10.1063/1.1559478
  36. (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1988, 165, 55; https://doi.org/10.1016/0166-1280(88)87006-4
  37. (b) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1990, 93, 2530. https://doi.org/10.1063/1.458891
  38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, 2013.
  39. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, Jr., J. A. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  40. (a) Bowman, J. M. Acc. Chem. Res. 1986, 19, 202; https://doi.org/10.1021/ar00127a002
  41. (b) Gerber, R. B.; Ratner, M. A. Adv. Chem. Phys. 1988, 70, 97.
  42. (a) Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1996, 105, 10332 https://doi.org/10.1063/1.472960
  43. (b) Norris, L. S.; Ratner, M. A.; Roitberg, A. E.; Gerber, R. B. J. Chem. Phys. 1996, 105, 11261; https://doi.org/10.1063/1.472922
  44. (c) Matsunaga, N.; Chaban, G. M.; Gerber, R. B. J. Chem. Phys. 2002, 117, 3541. https://doi.org/10.1063/1.1494978
  45. Barone, V. J. Chem. Phys. 2005, 122, 014108. https://doi.org/10.1063/1.1824881
  46. Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 2000, 113, 1005. https://doi.org/10.1063/1.481881
  47. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  48. Pudzianowski, A. T. J. Chem. Phys. 1995, 102, 8029. https://doi.org/10.1063/1.469001
  49. (a) Martin, J. M. L.; Oliveira, G. de J. Chem. Phys. 1999, 111, 1843; https://doi.org/10.1063/1.479454
  50. (b) Barnes, E. C.; Petersson, G. A.; Montgomery, J. A.; Frisch, M. J.; Martin, J. M. L. J. Chem. Theory Comput. 2009, 5, 2687. https://doi.org/10.1021/ct900260g
  51. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126, 084108. https://doi.org/10.1063/1.2436888
  52. (a) Chaban, G. M.; Jung, J. O.; Gerber, R. B. J. Phys. Chem. A 2000, 104, 2772; https://doi.org/10.1021/jp993391g
  53. (b) Chaban, G. M.; Xantheas, S. S.; Gerber, R. B. J. Phys. Chem. A 2003, 107, 4952. https://doi.org/10.1021/jp0343483
  54. Larson, J. W.; McMahon, T. B. Inorg. Chem. 1984, 23, 2029. https://doi.org/10.1021/ic00182a010
  55. Caldwell, G.; Kebarle, P. Can. J. Chem. 1985, 63, 1399. https://doi.org/10.1139/v85-241
  56. Stein, C.; Oswald, R.; Sebald, P.; Botschwina, P.; Stoll, H.; Peterson, K. A. Mol. Phys. 2013, 111, 2647. https://doi.org/10.1080/00268976.2013.809165