Table 1. Optimized geometries and vibrational frequencies of hydrogen bihalide anions, XHX− with X = F, Cl, and Br
Table 2. Anharmonic frequencies of FHF−
Table 3. Anharmonic frequencies of ClHCl−
Table 4. Anharmonic frequencies of BrHBr−
Table 5. Bonding energy ΔE0 and enthalpy ΔH298 of XHX− with X = F, Cl, and Br in kcal/mol
References
- (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, U. K., 1997;
- (b) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer, Berlin, Germany, 1991.
- Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, U. K., 1999.
- Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: Oxford, U. K., 1997.
- Hadzi, D. Ed.; Theoretical Treatments of Hydrogen Bonding; Wiley: Chichester, U. K., 1997.
- Wenthold, P. G.; Squires, R. R. J. Phys. Chem. 1995, 99, 2002. https://doi.org/10.1021/j100007a034
- (a) Neumark, D. M. Acc. Chem. Res. 1993, 26, 33; https://doi.org/10.1021/ar00026a001
- (b) Neumark, D. M. Phys. Chem. Chem. Phys. 2005, 7, 433. https://doi.org/10.1039/b417886f
- (a) Ault, B. S. J. Phys. Chem. 1978, 82, 844; https://doi.org/10.1021/j100496a018
- (b) McDonald, S. A.; Andrews, L. J. Chem. Phys. 1979, 70, 3134; https://doi.org/10.1063/1.437805
- (c) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1987, 87, 6819. https://doi.org/10.1063/1.453376
- (a) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1986, 84, 2953; https://doi.org/10.1063/1.450276
- (b) Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1987, 87, 6838. https://doi.org/10.1063/1.453378
- (a) Spirko, V.; Diercksen, G. H. F.; Sadlej, A. J.; Urban, M. Chem. Phys. Lett. 1989, 161, 519; https://doi.org/10.1016/0009-2614(89)87032-0
- (b) Spirko, V.; Cejchan, A.; Diercksen, G. H. F. Chem. Phys. 1991, 151, 45; https://doi.org/10.1016/0301-0104(91)80005-3
- (c) Yamashita, K.; Morokuma, K.; Leforestier, C. J. Chem. Phys. 1993, 99, 8848; https://doi.org/10.1063/1.465553
- (d) Spirko, V.; Sindelka, M.; Shirsat, R. N.; Leszczynski, J. Chem. Phys. Lett. 2003, 376, 595. https://doi.org/10.1016/S0009-2614(03)01036-4
- (a) Elghobash, N.; Gonzalez, L. J. Chem. Phys. 2006, 124, 174308; https://doi.org/10.1063/1.2191042
- (b) Hirata, S.; Miller, E. B.; Ohnishi, Y.; Yagi, K. J. Phys. Chem. A 2009, 113, 12461. https://doi.org/10.1021/jp903375d
- Del Bene, J. E.; Jordan, M. J. T. Spectrochim. Acta A 1999, 55, 719. https://doi.org/10.1016/S1386-1425(98)00273-X
- (a) Swalina, C.; Hammes-Schiffer, S. J. Phys. Chem. A 2005, 109, 10410; https://doi.org/10.1021/jp053552i
- (b) Hirata, S.; Yagi, K.; Perera, S. A.; Yamazaki, S.; Hirao, K. J. Chem. Phys. 2008, 128, 214305. https://doi.org/10.1063/1.2933284
- (a) Rasanen, M.; Seetula, J.; Kunttu, H. J. Chem. Phys. 1993, 98, 3914; https://doi.org/10.1063/1.464018
- (b) Lignell, A.; Khriachtchev, L.; Mustalampi, H.; Nurminen, T.; Rasanen, M. Chem. Phys. Lett. 2005, 405, 448. https://doi.org/10.1016/j.cplett.2005.02.080
- (a) Forney, D.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1995, 103, 1755; https://doi.org/10.1063/1.469749
- (b) Legay-Sommaire, N.; Legay, F. Chem. Phys. Lett. 1999, 314, 40; https://doi.org/10.1016/S0009-2614(99)01120-3
- (c) Fridgen, T. D.; Zhang, X. K.; Parnis, J. M.; March, R. E. J. Phys. Chem. A 2000, 104, 3487. https://doi.org/10.1021/jp993162u
- Kawaguchi, K. J. Chem. Phys. 1988, 88, 4186. https://doi.org/10.1063/1.453825
- (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1985, 122, 127; https://doi.org/10.1016/0166-1280(85)80036-1
- (b) Botschwina, P.; Sebald, P.; Burmeister, R. J. Chem. Phys. 1988, 88, 5246; https://doi.org/10.1063/1.454579
- (c) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1989, 91, 3539. https://doi.org/10.1063/1.456885
- (a) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1971, 55, 2550; https://doi.org/10.1063/1.1676447
- (b) Lugez, C. L.; Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1996, 105, 3901. https://doi.org/10.1063/1.472262
- (a) Pivonka, N. L.; Kaposta, C.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2002, 117, 6493; https://doi.org/10.1063/1.1506308
- (b) Pivonka, N. L.; Kaposta, C.; Brummer, M.; von Helden, G.; Meijer, G.; Woste, L.; Neumark, D. M.; Asmis, K. R. J. Chem. Phys. 2003, 118, 5275. https://doi.org/10.1063/1.1559478
- (a) Sannigrahi, A. B.; Peyerimhoff, S. D. J. Mol. Struct-Theochem. 1988, 165, 55; https://doi.org/10.1016/0166-1280(88)87006-4
- (b) Ikuta, S.; Saitoh, T.; Nomura, O. J. Chem. Phys. 1990, 93, 2530. https://doi.org/10.1063/1.458891
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, 2013.
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, Jr., J. A. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
- (a) Bowman, J. M. Acc. Chem. Res. 1986, 19, 202; https://doi.org/10.1021/ar00127a002
- (b) Gerber, R. B.; Ratner, M. A. Adv. Chem. Phys. 1988, 70, 97.
- (a) Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1996, 105, 10332 https://doi.org/10.1063/1.472960
- (b) Norris, L. S.; Ratner, M. A.; Roitberg, A. E.; Gerber, R. B. J. Chem. Phys. 1996, 105, 11261; https://doi.org/10.1063/1.472922
- (c) Matsunaga, N.; Chaban, G. M.; Gerber, R. B. J. Chem. Phys. 2002, 117, 3541. https://doi.org/10.1063/1.1494978
- Barone, V. J. Chem. Phys. 2005, 122, 014108. https://doi.org/10.1063/1.1824881
- Yagi, K.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 2000, 113, 1005. https://doi.org/10.1063/1.481881
- Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
- Pudzianowski, A. T. J. Chem. Phys. 1995, 102, 8029. https://doi.org/10.1063/1.469001
- (a) Martin, J. M. L.; Oliveira, G. de J. Chem. Phys. 1999, 111, 1843; https://doi.org/10.1063/1.479454
- (b) Barnes, E. C.; Petersson, G. A.; Montgomery, J. A.; Frisch, M. J.; Martin, J. M. L. J. Chem. Theory Comput. 2009, 5, 2687. https://doi.org/10.1021/ct900260g
- Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126, 084108. https://doi.org/10.1063/1.2436888
- (a) Chaban, G. M.; Jung, J. O.; Gerber, R. B. J. Phys. Chem. A 2000, 104, 2772; https://doi.org/10.1021/jp993391g
- (b) Chaban, G. M.; Xantheas, S. S.; Gerber, R. B. J. Phys. Chem. A 2003, 107, 4952. https://doi.org/10.1021/jp0343483
- Larson, J. W.; McMahon, T. B. Inorg. Chem. 1984, 23, 2029. https://doi.org/10.1021/ic00182a010
- Caldwell, G.; Kebarle, P. Can. J. Chem. 1985, 63, 1399. https://doi.org/10.1139/v85-241
- Stein, C.; Oswald, R.; Sebald, P.; Botschwina, P.; Stoll, H.; Peterson, K. A. Mol. Phys. 2013, 111, 2647. https://doi.org/10.1080/00268976.2013.809165