DOI QR코드

DOI QR Code

Current status of proton therapy techniques for lung cancer

  • Han, Youngyih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2019.12.16
  • 심사 : 2019.12.26
  • 발행 : 2019.12.31

초록

Proton beams have been used for cancer treatment for more than 28 years, and several technological advancements have been made to achieve improved clinical outcomes by delivering more accurate and conformal doses to the target cancer cells while minimizing the dose to normal tissues. The state-of-the-art intensity modulated proton therapy is now prevailing as a major treatment technique in proton facilities worldwide, but still faces many challenges in being applied to the lung. Thus, in this article, the current status of proton therapy technique is reviewed and issues regarding the relevant uncertainty in proton therapy in the lung are summarized.

키워드

참고문헌

  1. American Cancer Society. About lung cancer [Internet]. Atlanta, GA: American Cancer Society; c2019 [cited 2019 Dec 26]. Available from: https://www.cancer.org/content/dam/CRC/PDF/Public/8703.00.pdf.
  2. World Cancer Research Fund International. Worldwide cancer data [Internet]. London, UK: World Cancer Research Fund International; 2018 [cited 2019 Dec 26]. Available from: https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data.
  3. World Health Organization. Cancer [Internet]. Geneva, Switzerland: World Health Organization; 2018 [cited 2019 Dec 26]. Available from: https://www.who.int/news-room/factsheets/detail/cancer.
  4. Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res Treat 2019;51:417-30. https://doi.org/10.4143/crt.2019.138
  5. Harris JP, Murphy JD, Hanlon AL, Le QT, Loo BW Jr, Diehn M. A population-based comparative effectiveness study of radiation therapy techniques in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014;88:872-84. https://doi.org/10.1016/j.ijrobp.2013.12.010
  6. Sura S, Gupta V, Yorke E, Jackson A, Amols H, Rosenzweig KE. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan- Kettering Cancer Center (MSKCC) experience. Radiother Oncol 2008;87:17-23. https://doi.org/10.1016/j.radonc.2008.02.005
  7. Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-smallcell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 2017;35:56-62. https://doi.org/10.1200/JCO.2016.69.1378
  8. Kim H, Yoo H, Pyo H, et al. Impact of underlying pulmonary diseases on treatment outcomes in early-stage non-small cell lung cancer treated with definitive radiotherapy. Int J Chron Obstruct Pulmon Dis 2019;14:2273-81. https://doi.org/10.2147/COPD.S210759
  9. Watanabe A, Higami T, Ohori S, Koyanagi T, Nakashima S, Mawatari T. Is lung cancer resection indicated in patients with idiopathic pulmonary fibrosis? J Thorac Cardiovasc Surg 2008;136:1357-63. https://doi.org/10.1016/j.jtcvs.2008.07.016
  10. St James S, Grassberger C, Lu HM. Considerations when treating lung cancer with passive scatter or active scanning proton therapy. Transl Lung Cancer Res 2018;7:210-5. https://doi.org/10.21037/tlcr.2018.04.01
  11. Chang JY, Verma V, Li M, et al. Proton beam radiotherapy and concurrent chemotherapy for unresectable stage III non-small cell lung cancer: final results of a phase 2 study. JAMA Oncol 2017;3:e172032. https://doi.org/10.1001/jamaoncol.2017.2032
  12. Liao Z, Lee JJ, Komaki R, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensitymodulated photon radiotherapy for locally advanced nonsmall-cell lung cancer. J Clin Oncol 2018;36:1813-22. https://doi.org/10.1200/JCO.2017.74.0720
  13. Zhang X, Li Y, Pan X, et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensitymodulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys 2010;77:357-66. https://doi.org/10.1016/j.ijrobp.2009.04.028
  14. Wilson RR. Radiological use of fast protons. Radiology 1946;47:487-91. https://doi.org/10.1148/47.5.487
  15. Lawrence JH, Tobias CA, Born JL, et al. Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res 1958;18:121-34.
  16. Larsson B. Pre-therapeutic physical experiments with high energy protons. Br J Radiol 1961;34:143-51. https://doi.org/10.1259/0007-1285-34-399-143
  17. Kanai T, Kawachi K, Kumamoto Y, et al. Spot scanning system for proton radiotherapy. Med Phys 1980;7:365-9. https://doi.org/10.1118/1.594693
  18. Pedroni E, Bacher R, Blattmann H, et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys 1995;22:37-53. https://doi.org/10.1118/1.597522
  19. Lomax A. Intensity modulation methods for proton radiotherapy. Phys Med Biol 1999;44:185-205. https://doi.org/10.1088/0031-9155/44/1/014
  20. Phillips MH, Pedroni E, Blattmann H, Boehringer T, Coray A, Scheib S. Effects of respiratory motion on dose uniformity with a charged particle scanning method. Phys Med Biol 1992;37:223-34. https://doi.org/10.1088/0031-9155/37/1/016
  21. Hong L, Goitein M, Bucciolini M, et al. A pencil beam algorithm for proton dose calculations. Phys Med Biol 1996;41:1305-30. https://doi.org/10.1088/0031-9155/41/8/005
  22. Schaffner B, Pedroni E, Lomax A. Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol 1999;44:27-41. https://doi.org/10.1088/0031-9155/44/1/004
  23. Russell KR, Isacsson U, Saxner M, et al. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol 2000;45:9-27. https://doi.org/10.1088/0031-9155/45/1/302
  24. Soukup M, Fippel M, Alber M. A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations. Phys Med Biol 2005;50:5089-104. https://doi.org/10.1088/0031-9155/50/21/010
  25. Szymanowski H, Oelfke U. Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media. Phys Med Biol 2002;47:3313-30. https://doi.org/10.1088/0031-9155/47/18/304
  26. Paganetti H. Monte Carlo simulations will change the way we treat patients with proton beams today. Br J Radiol 2014;87:20140293. https://doi.org/10.1259/bjr.20140293
  27. Saini J, Maes D, Egan A, et al. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Phys Med Biol 2017;62:7659-81. https://doi.org/10.1088/0031-9155/62/19/7659
  28. Langner UW, Mundis M, Strauss D, Zhu M, Mossahebi S. A comparison of two pencil beam scanning treatment planning systems for proton therapy. J Appl Clin Med Phys 2018;19:156-63. https://doi.org/10.1002/acm2.12235
  29. Tommasino F, Fellin F, Lorentini S, Farace P. Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer. Phys Med 2018;50:7-12. https://doi.org/10.1016/j.ejmp.2018.05.018
  30. Shirey RJ, Wu HT. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy. J Appl Clin Med Phys 2018;19:164-73. https://doi.org/10.1002/acm2.12241
  31. Widesott L, Lorentini S, Fracchiolla F, Farace P, Schwarz M. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm. Phys Med Biol 2018;63:145016. https://doi.org/10.1088/0031-9155/63/14/145016
  32. Saini J, Traneus E, Maes D, et al. Advanced proton beam dosimetry part I: review and performance evaluation of dose calculation algorithms. Transl Lung Cancer Res 2018;7:171-9. https://doi.org/10.21037/tlcr.2018.04.05
  33. Schreuder AN, Bridges DS, Rigsby L, et al. Validation of the RayStation Monte Carlo dose calculation algorithm using a realistic lung phantom. J Appl Clin Med Phys 2019;20:127-37 https://doi.org/10.1002/acm2.12777
  34. Maes D, Saini J, Zeng J, Rengan R, Wong T, Bowen SR. Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer. Transl Lung Cancer Res 2018;7:114-21. https://doi.org/10.21037/tlcr.2018.04.04
  35. Taylor PA, Kry SF, Followill DS. Pencil beam algorithms are unsuitable for proton dose calculations in lung. Int J Radiat Oncol Biol Phys 2017;99:750-6. https://doi.org/10.1016/j.ijrobp.2017.06.003
  36. Huang S, Souris K, Li S, et al. Validation and application of a fast Monte Carlo algorithm for assessing the clinical impact of approximations in analytical dose calculations for pencil beam scanning proton therapy. Med Phys 2018;45:5631-42. https://doi.org/10.1002/mp.13231
  37. De Oliveira Duarte S, Rancoule C, He MY, et al. Use of 4D-CT for radiotherapy planning and reality in France: data from a national survey. Cancer Radiother 2019;23:395-400. https://doi.org/10.1016/j.canrad.2019.02.006
  38. Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004;31:333-40. https://doi.org/10.1118/1.1639993
  39. Martin R, Pan T. Target volume and artifact evaluation of a new data-driven 4D CT. Pract Radiat Oncol 2017;7:e345-54. https://doi.org/10.1016/j.prro.2017.01.014
  40. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33:3874-900. https://doi.org/10.1118/1.2349696
  41. Zhang Y, Huth I, Weber DC, Lomax AJ. Dosimetric uncertainties as a result of temporal resolution in 4D dose calculations for PBS proton therapy. Phys Med Biol 2019;64:125005. https://doi.org/10.1088/1361-6560/ab1d6f
  42. George R, Chung TD, Vedam SS, et al. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 2006;65:924-33. https://doi.org/10.1016/j.ijrobp.2006.02.035
  43. Li R, Lewis JH, Cervino LI, Jiang SB. 4D CT sorting based on patient internal anatomy. Phys Med Biol 2009;54:4821-33. https://doi.org/10.1088/0031-9155/54/15/012
  44. Mori S, Hirai R, Sakata Y. Using a deep neural network for four-dimensional CT artifact reduction in image-guided radiotherapy. Phys Med 2019;65:67-75. https://doi.org/10.1016/j.ejmp.2019.08.008
  45. Matney J, Park PC, Bluett J, et al. Effects of respiratory motion on passively scattered proton therapy versus intensity modulated photon therapy for stage III lung cancer: are proton plans more sensitive to breathing motion? Int J Radiat Oncol Biol Phys 2013;87:576-82. https://doi.org/10.1016/j.ijrobp.2013.07.007
  46. Bert C, Grozinger SO, Rietzel E. Quantification of interplay effects of scanned particle beams and moving targets. Phys Med Biol 2008;53:2253-65. https://doi.org/10.1088/0031-9155/53/9/003
  47. Boria AJ, Uh J, Pirlepesov F, et al. Interplay effect of target motion and pencil-beam scanning in proton therapy for pediatric patients. Int J Part Ther 2018;5:1-10.
  48. Grassberger C, Dowdell S, Lomax A, et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys 2013;86:380-6. https://doi.org/10.1016/j.ijrobp.2013.01.024
  49. Dowdell S, Grassberger C, Sharp GC, Paganetti H. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters. Phys Med Biol 2013;58:4137-56. https://doi.org/10.1088/0031-9155/58/12/4137
  50. Seco J, Robertson D, Trofimov A, Paganetti H. Breathing interplay effects during proton beam scanning: simulation and statistical analysis. Phys Med Biol 2009;54:N283-94. https://doi.org/10.1088/0031-9155/54/14/N01
  51. Xing Y, Wu X, Li Y, Zhao J. Homogeneity study of proton and carbon ion scanning beams using combinations of different spot sizes and grid sizes. Med Phys 2017;44:6047-52. https://doi.org/10.1002/mp.12569
  52. Li Y, Kardar L, Li X, et al. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys 2014;41:021721. https://doi.org/10.1118/1.4862076
  53. Grassberger C, Dowdell S, Sharp G, Paganetti H. Motion mitigation for lung cancer patients treated with active scanning proton therapy. Med Phys 2015;42:2462-9. https://doi.org/10.1118/1.4916662
  54. Park PC, Zhu XR, Lee AK, et al. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys 2012;82:e329-36. https://doi.org/10.1016/j.ijrobp.2011.05.011
  55. Rietzel E, Bert C. Respiratory motion management in particle therapy. Med Phys 2010;37:449-60. https://doi.org/10.1118/1.3250856
  56. Lin L, Kang M, Huang S, et al. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors. J Appl Clin Med Phys 2015;16:5678.
  57. Graeff C, Durante M, Bert C. Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 2012;39:6004-13. https://doi.org/10.1118/1.4749964
  58. Unkelbach J, Chan TC, Bortfeld T. Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2007;52:2755-73. https://doi.org/10.1088/0031-9155/52/10/009
  59. Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys 2011;38:1672-84. https://doi.org/10.1118/1.3556559
  60. Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2008;53:1689-700. https://doi.org/10.1088/0031-9155/53/6/013
  61. Liu W, Li Y, Li X, Cao W, Zhang X. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques. Med Phys 2012;39:3089-101. https://doi.org/10.1118/1.4711909
  62. Fredriksson A, Bokrantz R. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning. Med Phys 2014;41:081701. https://doi.org/10.1118/1.4883837
  63. Chen W, Unkelbach J, Trofimov A, et al. Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol 2012;57:591-608. https://doi.org/10.1088/0031-9155/57/3/591
  64. Graeff C. Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys Med 2014;30:570-7. https://doi.org/10.1016/j.ejmp.2014.03.011
  65. Ge S, Wang X, Liao Z, et al. Potential for improvements in robustness and optimality of intensity-modulated proton therapy for lung cancer with 4-dimensional robust optimization. Cancers (Basel) 2019;11: E35.
  66. Liu W, Schild SE, Chang JY, et al. Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer. Int J Radiat Oncol Biol Phys 2016;95:523-33. https://doi.org/10.1016/j.ijrobp.2015.11.002
  67. Graeff C, Luchtenborg R, Eley JG, Durante M, Bert C. A 4D-optimization concept for scanned ion beam therapy. Radiother Oncol 2013;109:419-24. https://doi.org/10.1016/j.radonc.2013.09.018
  68. Furukawa T, Inaniwa T, Sato S, et al. Moving target irradiation with fast rescanning and gating in particle therapy. Med Phys 2010;37:4874-9. https://doi.org/10.1118/1.3481512
  69. Engwall E, Fredriksson A, Glimelius L. 4D robust optimization including uncertainties in time structures can reduce the interplay effect in proton pencil beam scanning radiation therapy. Med Phys 2018 Jul 16 [Epub]. https://doi.org/10.1002/mp.13094.
  70. Huang TC, Wang YC, Chiou YR, Kao CH. Respiratory motion reduction in PET/CT using abdominal compression for lung cancer patients. PLoS One 2014;9:e98033. https://doi.org/10.1371/journal.pone.0098033
  71. Rasheed A, Jabbour SK, Rosenberg S, et al. Motion and volumetric change as demonstrated by 4DCT: the effects of abdominal compression on the GTV, lungs, and heart in lung cancer patients. Pract Radiat Oncol 2016;6:352-9. https://doi.org/10.1016/j.prro.2015.12.006
  72. Bouilhol G, Ayadi M, Rit S, et al. Is abdominal compression useful in lung stereotactic body radiation therapy?: a 4DCT and dosimetric lobe-dependent study. Phys Med 2013;29:333-40. https://doi.org/10.1016/j.ejmp.2012.04.006
  73. Mampuya WA, Nakamura M, Matsuo Y, et al. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy. Med Phys 2013;40:091718. https://doi.org/10.1118/1.4819940
  74. Han C, Sampath S, Schultheisss TE, Wong JY. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression. Med Dosim 2017;42:116-21. https://doi.org/10.1016/j.meddos.2017.01.008
  75. Hanley J, Debois MM, Mah D, et al. Deep inspiration breathhold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 1999;45:603-11. https://doi.org/10.1016/S0360-3016(99)00154-6
  76. Scherman Rydhog J, Riisgaard de Blanck S, Josipovic M, et al. Target position uncertainty during visually guided deepinspiration breath-hold radiotherapy in locally advanced lung cancer. Radiother Oncol 2017;123:78-84. https://doi.org/10.1016/j.radonc.2017.02.003
  77. Josipovic M, Persson GF, Dueck J, et al. Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer. Radiother Oncol 2016;118:510-4. https://doi.org/10.1016/j.radonc.2015.11.004
  78. Josipovic M, Aznar MC, Thomsen JB, et al. Deep inspiration breath hold in locally advanced lung cancer radiotherapy: validation of intrafractional geometric uncertainties in the INHALE trial. Br J Radiol 2019;92:20190569. https://doi.org/10.1259/bjr.20190569
  79. Lee D, Greer PB, Lapuz C, et al. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency. Adv Radiat Oncol 2017;2:354-62. https://doi.org/10.1016/j.adro.2017.03.002
  80. Gorgisyan J, Munck Af Rosenschold P, et al. Feasibility of pencil beam scanned intensity modulated proton therapy in breath-hold for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2017;99:1121-8. https://doi.org/10.1016/j.ijrobp.2017.08.023
  81. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44:911-9. https://doi.org/10.1016/S0360-3016(99)00056-5
  82. Panakis N, McNair HA, Christian JA, et al. Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters. Radiother Oncol 2008;87:65-73. https://doi.org/10.1016/j.radonc.2007.12.012
  83. Brock J, McNair HA, Panakis N, Symonds-Tayler R, Evans PM, Brada M. The use of the Active Breathing Coordinator throughout radical non-small-cell lung cancer (NSCLC) radiotherapy. Int J Radiat Oncol Biol Phys 2011;81:369-75. https://doi.org/10.1016/j.ijrobp.2010.05.038
  84. Lu L, Diaconu C, Djemil T, et al. Intra- and inter-fractional liver and lung tumor motions treated with SBRT under active breathing control. J Appl Clin Med Phys 2018;19:39-45. https://doi.org/10.1002/acm2.12272
  85. Kaza E, Dunlop A, Panek R, et al. Lung volume reproducibility under ABC control and self-sustained breath-holding. J Appl Clin Med Phys 2017;18:154-62. https://doi.org/10.1002/acm2.12034
  86. Den Otter LA, Kaza E, Kierkels RGJ, et al. Reproducibility of the lung anatomy under active breathing coordinator control: dosimetric consequences for scanned proton treatments. Med Phys 2018;45:5525-34. https://doi.org/10.1002/mp.13195
  87. Matsuura T, Miyamoto N, Shimizu S, et al. Integration of a real-time tumor monitoring system into gated proton spotscanning beam therapy: an initial phantom study using patient tumor trajectory data. Med Phys 2013;40:071729. https://doi.org/10.1118/1.4810966
  88. Kanehira T, Matsuura T, Takao S, et al. Impact of real-time image gating on spot scanning proton therapy for lung tumors: a simulation study. Int J Radiat Oncol Biol Phys 2017;97:173-81. https://doi.org/10.1016/j.ijrobp.2016.09.027
  89. Ciocca M, Mirandola A, Molinelli S, et al. Commissioning of the 4-D treatment delivery system for organ motion management in synchrotron-based scanning ion beams. Phys Med 2016;32:1667-71. https://doi.org/10.1016/j.ejmp.2016.11.107
  90. Yamada T, Miyamoto N, Matsuura T, et al. Optimization and evaluation of multiple gating beam delivery in a synchrotronbased proton beam scanning system using a real-time imaging technique. Phys Med 2016;32:932-7. https://doi.org/10.1016/j.ejmp.2016.06.002
  91. Schatti A, Zakova M, Meer D, Lomax AJ. Experimental verification of motion mitigation of discrete proton spot scanning by re-scanning. Phys Med Biol 2013;58:8555-72. https://doi.org/10.1088/0031-9155/58/23/8555
  92. Bernatowicz K, Lomax AJ, Knopf A. Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys Med Biol 2013;58:7905-20. https://doi.org/10.1088/0031-9155/58/22/7905
  93. Schatti A, Meer D, Lomax AJ. First experimental results of motion mitigation by continuous line scanning of protons. Phys Med Biol 2014;59:5707-23. https://doi.org/10.1088/0031-9155/59/19/5707
  94. Riboldi M, Orecchia R, Baroni G. Real-time tumour tracking in particle therapy: technological developments and future perspectives. Lancet Oncol 2012;13:e383-91.
  95. Particle Therapy Co-Operative Group. Statistics of patients treated in particle therapy facilities worldwide [Internet]. Villigen, Switzerland: Particle Therapy Co-Operative Group; c2019 [cited 2019 Dec 26]; Available from: https://www.ptcog.ch/index.php/ptcog-patient-statistics.
  96. Particle Therapy Co-Operative Group. Particle therapy facilities in clinical operation [Internet]. Villigen, Switzerland: Particle Therapy Co-Operative Group; c2019 [cited 2019 Dec 26]. Available from: https://www.ptcog.ch/index.php/facilities-inoperation.
  97. Oh D. Proton therapy: the current status of the clinical evidences. Precis Future Med 2019;3:91-102. https://doi.org/10.23838/pfm.2019.00058

피인용 문헌

  1. Current radiotherapy techniques in NSCLC: challenges and potential solutions vol.20, pp.5, 2020, https://doi.org/10.1080/14737140.2020.1760094
  2. Clinical commissioning of intensity‐modulated proton therapy systems: Report of AAPM Task Group 185 vol.48, pp.1, 2021, https://doi.org/10.1002/mp.14546
  3. Particle Therapy for Breast Cancer: Benefits and Challenges vol.11, 2021, https://doi.org/10.3389/fonc.2021.662826
  4. Mutual Information-Based Non-Local Total Variation Denoiser for Low-Dose Cone-Beam Computed Tomography vol.11, 2019, https://doi.org/10.3389/fonc.2021.751057
  5. Salvage proton beam therapy for locoregional recurrence of non-small cell lung cancer vol.39, pp.1, 2019, https://doi.org/10.3857/roj.2020.01074
  6. Electrophysiological and Pathological Impact of Medium‐Dose External Carbon Ion and Proton Beam Radiation on the Left Ventricle in an Animal Model vol.10, pp.7, 2019, https://doi.org/10.1161/jaha.120.019687
  7. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung vol.86, 2019, https://doi.org/10.1016/j.ejmp.2021.05.021
  8. Clinical Outcomes of Pencil Beam Scanning Proton Therapy in Locally Advanced Non-Small Cell Lung Cancer: Propensity Score Analysis vol.13, pp.14, 2019, https://doi.org/10.3390/cancers13143497
  9. Physical and Biological Characteristics of Particle Therapy for Oncologists vol.53, pp.3, 2021, https://doi.org/10.4143/crt.2021.066
  10. Who Will Benefit from Charged-Particle Therapy? vol.53, pp.3, 2019, https://doi.org/10.4143/crt.2021.299
  11. Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer vol.13, pp.18, 2021, https://doi.org/10.3390/cancers13184545
  12. Current role of proton beam therapy in patients with hepatocellular carcinoma vol.10, pp.4, 2019, https://doi.org/10.18528/ijgii210043
  13. Monitor unit prediction model for wobbling proton therapy with ridge filters vol.48, pp.12, 2019, https://doi.org/10.1002/mp.15277
  14. Low-dose CBCT reconstruction via joint non-local total variation denoising and cubic B-spline interpolation vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-83266-1