Acknowledgement
Supported by : National Natural Science Foundation of China
References
- AS/NZS (2011), Structural Design Actions. Part 2: Wind Actions, Standard Australia and Standards New Zealand; Sydney, NSW, Australia.
- Chen, W. and Hao, H. (2015), "Performance of structural insulated panels with rigid skins subjected to windborne debris impacts-Experimental investigations", Construct. Build. Mater., 77, 241-252. https://doi.org/10.1016/j.conbuildmat.2014.12.112.
- Chen, W., Hao, H. and Chen, S. (2015), "Performance of composite structural insulated panel with metal skin subjected to blast loading", Mater. Design, 84, 194-203. https://doi.org/10.1016/j.matdes.2015.06.081.
- Chen, W., Hao, H. and Irawan, P. (2016), "Experimental investigations of fabric material against projectile impacts", Construct. Build. Mater., 104, 142-153. https://doi.org/10.1016/j.conbuildmat.2015.12.028.
- Ding, J. (2010), "Mechanism analysis of wind-induced damage of cable-membrane structures", Ph.D. Dissertation, Tongji University, Shanghai, China.
- Forster, B. and Mollaret, M. (2004), European Design Guide for Tensile Structures, Tensinet, Brussel, Belgium.
- Grayson, M., Pang W.C. and Schiff, S. (2012), "Threedimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment", J. Wind Eng. Industrial Aerodynam., 102(3), 22-35. https://doi.org/10.1016/j.jweia.2012.01.002.
- Li, D., Zheng, Z.L. and Liu, C.Y. (2017), "Dynamic response of rectangular prestressed membrane subjected to uniform impact load", Arch. Civil Mech. Eng., 17(3), 586-598. https://doi.org/10.1016/j.acme.2017.01.006.
- Li, D., Zheng, Z.L. and Tian, Y. (2017), "Stochastic nonlinear vibration and reliability of orthotropic membrane structure under impact load", Thin-Wall. Struct., 119, 247-255. https://doi.org/10.1016/j.tws.2017.06.008
- Li, D.Y., Yang, Q.S. and Tian, Y.J. (2015), "Wind pressure zones on a saddle roof based on fuzzy C-means clustering", J. Vib. Shock, 34(5).
- Li, Y., Gu, B. and Sun, B. (2016), "Energy absorption of threedimensional braided composites under impact punch shear loading", Text. Res. J., 86(19). https://doi.org/10.1177/0040517515621127.
- Lin, N., Holmes, J.D. and Letchford, C.W. (2007), "Trajectories of wind-borne debris in horizontal winds and applications to impact testing", J. Struct. Eng., 133(2), 274-282. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(274).
- Liu, C., Zheng, Z. and Yang, X. (2016), "Analytical and numerical studies on the nonlinear dynamic response of orthotropic membranes under impact load", Earthq. Eng. Eng. Vib, 15(4), 657-672. https://doi.org/10.1007/s11803-016-0356-7.
- Malla, R.B. and Gionet, T.G. (2013), "Dynamic response of a pressurized frame-membrane lunar structure with regolith cover subjected to impact load", J. Aerosp. Eng., 26(4), 855-873. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000187.
- Meng, Q., Hao, H. and Chen, W. (2016), "Laboratory test and numerical study of structural insulated panel strengthened with glass fiber laminate against windborne debris impact", Construct. Build. Mater., 114, 434-446. https://doi.org/10.1016/j.conbuildmat.2016.03.190.
- Meng, Q.F., Hao, H. and Chen, W.S. (2016), "Numerical study of basalt fiber cloth strengthened structural insulated panel under windborne debris impact", Appl. Mech. Mater., 846(17):446-451. https://doi.org/10.4028/www.scientific.net/AMM.846.446.
- Moghim, F. and Caracoglia, L. (2012), "A numerical model for wind-borne compact debris trajectory estimation: Part 1 - Probabilistic analysis of trajectory in the proximity of tall buildings", Eng. Struct., 38(4), 153-162. https://doi.org/10.1016/j.engstruct.2011.11.020.
- Moghim, F., Xia, F.T. and Caracoglia, L. (2015), "Experimental analysis of a stochastic model for estimating wind-borne compact debris trajectory in turbulent winds", J. Fluids Struct., 54, 900-924. https://doi.org/10.1016/j.jfluidstructs.2015.02.007.
- Moghim, F., Xia, F.T. and Caracoglia, L. (2015), "Experimental analysis of a stochastic model for estimating wind-borne compact debris trajectory in turbulent winds", J. Fluid. Struct., 54, 900-924. https://doi.org/10.1016/j.jfluidstructs.2015.02.007.
- Mostofi, T.M., Babaei, H. and Alitavoli, M. (2016), "Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates", Thin-Wall. Struct., 109, 367-376. https://doi.org/10.1016/j.tws.2016.10.009.
- Ning, L., Holmes, J. and Letchford, C. (2007), "Trajectories of windborne debris and applications to impact testing", J. Struct. Eng., 133(2), 274-282. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(274).
- Phoenix, S.L. and Porwal, P.K. (2003), "A new membrane model for the ballistic impact response and V 50, performance of multiply fibrous systems", J. Solids. Struct., 40(24), 6723-6765. https://doi.org/10.1016/S0020-7683(03)00329-9.
- Sun, Y., Su, N. and Wu, Y. (2014), "Modeling of conical vortex induced fluctuating wind pressure spectra on large-span flat roofs", China Civil Eng. J., 47(1), 88-98.
- Wang, Y., Chen, X. and Young, R. (2015), "A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics", Compos. Struct., 140, 44-52. https://doi.org/10.1016/j.compstruct.2015.12.055.
- Xu, H., Gentilini, G. and Yu, Z.X. (2018), "An energy allocation based design approach for flexible rockfall protection barriers", Eng. Struct., 173, 831-852. https://doi.org/10.1016/j.engstruct.2018.07.018.
- York, A.R., Sulsky, D. and Schreyer, H.L. (2015), "The material point method for simulation of thin m embranes", J. Numeric. Method. Eng., 44(10), 1429-1456. .
- Yu, Z.X., Qiao, Y.K. and Zhao L. (2018), "A simple analytical method for evaluation of flexible rockfall barrier part 2: application and full-scale test", Adv. Steel Construct., 14(2), 142-165.
- Yu, Z.X., Qiao, Y.K. and Zhao, L. (2018), "A simple analytical method for evaluation of flexible rockfall barrier part 1: working mechanism and analytical solution", Adv. Steel Construct., 14(2), 115-141.
- Zhang Y.Y., Xu, J.H. and Zhou, Y. (2019), "Central tearing behaviors of PVC coated fabrics with initial notch", Compos. Struct., 208, 618-633. https://doi.org/10.1016/j.compstruct.2018.09.104
- Zhang, Y.Y., Xu, J.H. and Zhang, Q.L. (2018), "Advances in mechanical properties of coated fabrics in civil engineering", J. Industiral Textile., 48(1), 255-271. https://doi.org/10.1177%2F1528083716679159. https://doi.org/10.1177/1528083716679159
- Zhang, Y.Y., Zhang, Q.L. and Yang, Z.F. (2015), "Load-dependent mechanical behavior of membrane materials and its effect on the static behaviors of membrane structures", J. Mater. Civil Eng., 27(11), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001273.
- Zheng, Z., Guo, J. and Song, W. (2014), "Nonlinear free vibration analysis of axisymmetric polar orthotropic circular membranes under the fixed boundary condition", Math. Problem. Eng., 2014(3), 1-8. http://dx.doi.org/10.1155/2014/651356.
- Zheng, Z., Song, W. and Liu, G. (2012), "Study on dynamic response of rectangular orthotropic membranes under impact loading", J. Adhes. Sic. Technol., 26(10-11), 1467-1479. https://doi.org/10.1163/156856111X618335
- Zhou, H., Dhiradhamvit, K. and Attard, T.L. (2014), "Tornadoborne debris impact performance of an innovative storm safe room system protected by a carbon fiber reinforced hybrid polymeric-matrix composite", Eng. Struct., 59(2), 308-319. https://doi.org/10.1016/j.engstruct.2013.10.041.
Cited by
- Impact Tensile Behaviors of PVDF Building Coated Fabrics vol.2020, 2019, https://doi.org/10.1155/2020/1620760
- Cutting pattern of a fabric for architectural hypar vol.890, 2019, https://doi.org/10.1088/1757-899x/890/1/012077
- Hailstone-induced dynamic responses of pretensioned umbrella membrane structure vol.24, pp.1, 2019, https://doi.org/10.1177/1369433220940149