DOI QR코드

DOI QR Code

무인비행체 영상을 활용한 벼 수량 분포 추정

Estimation of Rice Grain Yield Distribution Using UAV Imagery

  • Lee, KyungDo (National Institute of Agricultural Science, Rural Development Administration) ;
  • An, HoYong (National Institute of Agricultural Science, Rural Development Administration) ;
  • Park, ChanWon (National Institute of Agricultural Science, Rural Development Administration) ;
  • So, KyuHo (National Institute of Agricultural Science, Rural Development Administration) ;
  • Na, SangIl (National Institute of Agricultural Science, Rural Development Administration) ;
  • Jang, SuYong (Hanmaeum Farming Cooperation)
  • 투고 : 2019.04.30
  • 심사 : 2019.05.20
  • 발행 : 2019.07.31

초록

Unmanned aerial vehicle(UAV) can acquire images with lower cost than conventional manned aircraft and commercial satellites. It has the advantage of acquiring high-resolution aerial images covering in the field area more than 50 ha. The purposes of this study is to develop the rice grain yield distribution using UAV. In order to develop a technology for estimating the rice yield using UAV images, time series UAV aerial images were taken at the paddy fields and the data were compared with the rice yield of the harvesting area for two rice varieties(Singdongjin, Dongjinchal). Correlations between the vegetation indices and rice yield were ranged from 0.8 to 0.95 in booting period. Accordingly, rice yield was estimated using UAV-derived vegetation indices($R^2=0.70$ in Sindongjin, $R^2=0.92$ in Donjinchal). It means that the rice yield estimation using UAV imagery can provide less cost and higher accuracy than other methods using combine with yield monitoring system and satellite imagery. In the future, it will be necessary to study a variety of information convergence and integration systems such as image, weather, and soil for efficient use of these information, along with research on preparing management practice work standards such as pest control and nutrient use based on UAV image information.

키워드

NGHHCI_2019_v61n4_1_f0001.png 이미지

Fig. 1 Location of study area and sampling sites

NGHHCI_2019_v61n4_1_f0002.png 이미지

Fig. 2 Aerial photos of study site and sample locations

NGHHCI_2019_v61n4_1_f0003.png 이미지

Fig. 3 Rice yield of study sample sites

NGHHCI_2019_v61n4_1_f0004.png 이미지

Fig. 4 Variations of UAV imagery vegetation indices on study sample sites

NGHHCI_2019_v61n4_1_f0005.png 이미지

Fig. 5 Correlation coefficient between vegetation index and rice yield

NGHHCI_2019_v61n4_1_f0006.png 이미지

Fig. 6 Relationship between rice (Sindongji) yield and vegetation indices

NGHHCI_2019_v61n4_1_f0007.png 이미지

Fig. 7 Relationship between rice (Dongjinchal) yield and vegetation indices

NGHHCI_2019_v61n4_1_f0008.png 이미지

Fig. 8 Scatter plot of rice grain yield estimation model

NGHHCI_2019_v61n4_1_f0009.png 이미지

Fig. 9 Vegetation index (GNDVI) in booting period and yield distribution map using UAV imagery on Sindongjin in Site #1, #2

NGHHCI_2019_v61n4_1_f0010.png 이미지

Fig. 10 Vegetation index (GNDVI) in booting period and yield distribution map using UAV imagery on Dongjinchal in Site #3, #4,#5

Table 1 UAV image collecting dates and flight information

NGHHCI_2019_v61n4_1_t0001.png 이미지

Table 2 Vegetation indices related to crop growth monitoring

NGHHCI_2019_v61n4_1_t0002.png 이미지

Table 3 Descriptive statistics of paddy rice grain yield

NGHHCI_2019_v61n4_1_t0003.png 이미지

참고문헌

  1. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth, 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing 6(11): 10395-10412. doi:10.3390/rs61110395.
  2. Choi, M. G., W. Y. Choi, H. K. Park, J. K. Nam, N. H. Back, J. H. Lee, S. S. Kim, and C. K. Kim, 2006. Influences of site-specific N application on rice grain yield and quality in small size paddy field. Korean Journal of Crop Science 51(5): 369-378.
  3. Chung, S. O., W. K. Park, Y. C. Chang, D. H. Lee, and W. P. Park, 1999. Yield mapping of a small sized paddy field. Journal of Biosystems Engineering 24(2): 135-144.
  4. Cohen, W. B., 1991. Response of vegetation indices to change in three measures of leaf water stress. Photogrammetric Engineering and Remote Sensing 57(2): 195-202. doi: 10.3390/rs61110395.
  5. Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak, 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58: 289-298. doi:10.1016/S0034-4257(96)00072-7.
  6. Gong, H. Y., S. S. Kang, and S. D. Hong, 2011. Estimation of nitrogen uptake and biomass of rice using ground-based remote sensing techniques. Korean Journal of Soil Science and Fertilizer 44(5): 779-787. doi:10.7745/KJSSF.2011.44.5.779.
  7. Huete, A. R., K. Didan, and Y. Yin, 2002. MODIS vegeation workshop, Missoula, Montana, July 15-18; Terrestrial biophysics and remote sensing (TBRS) MODIS team, University of Arizonal.
  8. Hunt, E. R., W. D. Hively, S. J. Fujikawa, D. S. Linden, C. S. Daughtry, and G. W. McCarty, 2010. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing 2(1): 290-305. doi:10.3390/rs2010290.
  9. Jordan, C. F., 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663-666. doi:10.2307/1936256.
  10. Kim, M. H., C. K. Lee, H. K. Park, J. E. Lee, B. C. Koo, and J. C. Shin, 2008. A study on rice growth and yield monitoring using medium resolution Landsat Imagery. Korea Journal of Crop Science 63(4): 388-393.
  11. Kim, Y. H., and S. Y. Hong, 2008. Estimation of rice grain protein contents using ground optical remote sensors. Korean Journal of Remote Sensing 24(6): 551-558. https://doi.org/10.7780/kjrs.2008.24.6.551
  12. Kim, S. H., 2016. A study on the diffusion of Korean agricultural ICT and role of the agricultural cooperative federation using the theory of technology adoption life cycle and chasm. Cooperative Management Review 45: 1-27.
  13. Na, S. I., S. Y. Hong, C. W. Park, K. D. Kim, and K. D. Lee, 2016. Estimation of highland kimchi cabbage growth using UAV NDVI and Agro-meteorological factors. Korean Journal of Soil Science and Fertilizer 49(5): 420-428. doi:10.7745/KJSSF.2016.49.5.420.
  14. Nigon, T. J., D. J. Mulla, C. J. Rosen, Y. Cohen, V. Alchanatis, and R. Rud, 2014. Evaluation of the nitrogen sufficiency index for use with high resolution, broadband aerial imagery in a commercial potato field. Precision Agriculture 15: 202-226. doi:10.1007/s11119-013-9333-6.
  15. Lee, C. K., J. H. Sung, I. G. Jing, S. C. Kim, W. P. Park, Y. B. Lee, and W. K. Park, 2004a. Geo-statistical analysis of growth variability in rice paddy field. Journal of Biosystems Engineering 29(2): 109-120. https://doi.org/10.5307/JBE.2004.29.2.109
  16. Lee, C. K., M. Umeda, I. G. Jung, J. H Sung, S. C. Kim, W. P. Park, and Y. B. Lee, 2004b. Spatial variability analysis of paddy rice yield in field. Journal of Biosystems Engineering 29(3): 267-274. https://doi.org/10.5307/JBE.2004.29.3.267
  17. Lee, C. K., Y. Choi, H. J. Kim, S. B. Lee, and C. S. Ryu, 2007. Development of a rice weighing system for head-feed combine. Journal of Biosystems Engineering 32(5): 332-338. https://doi.org/10.5307/JBE.2007.32.5.332
  18. Lee, K. D., S. I. Na, S. C. Baek, K. D. Park, J. S. Choi, S. J. Kim, H. J. Kim, H. S. Choi, and S. Y. Hong, 2015. Estimating the amount of nitrogen in hairy vetch on paddy fields using unmanned aerial vehicle imagery. Korean Journal of Soil Science and Fertilizer 48(5): 384-390. doi:10.7745/KJSSF.2015.48.5.384.
  19. Lee, K. D., Y. E. Lee, C. W. Park, S. Y. Hong, and S. I. Na, 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV "Ebee". Korean Journal of Soil Science and Fertilizer 49(6): 731-742. doi:10.7745/KJSSF.2016.49.6.731.
  20. Lee, K. D., C. W. Park, K. H. So, and S. I. Na, 2017. Selection optimal vegeation indices and regression model for estimation of rice growth using UAV aerial images. Korean Journal of Soil Science and Fertilizer 50(5): 409-421. doi:10.7745/KJSSF.2017.50.5.409.
  21. Park, J. K., H. J. Lee, and J. W. Hwang, 2005. An analysis of adoption possibility for precision agriculture in Korean rice farms. Korean Journal of Economics 46(4): 1-23.
  22. Park, J. K., and J. H. Park, 2015. Crops classification using imagery of unmanned aerial vehicle (UAV). Journal of the Korean Society of Agricultural Engineers 57(6): 91-97. doi:10.5389/KSAE.2015.57.6.091.
  23. Pearson, R. L., and L. D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan, Ann Arbor, MI, 1357-1381.
  24. Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150. doi:10.1016/0034-4257(79)90013-0.
  25. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden, S. C., Mercanti, E. P., Becker, M. (Eds.), Third Earth Resources Technology Satellite-1 Symposium, Technical Presentations, NASA SP-351.
  26. Schlerf, M., C. Atzberger, and J. Hill, 2005. Remote sensing of forest biophysical variables using HyMap imaging spectometer data. Remote Sensing of Environment 95: 177-194. doi:10.1016/j.rse.2004.12.016.
  27. Sripada, R. P., R. W. Heiniger, J. G. White, and A. D. Meijer, 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal 98: 968-977. doi:10.2134/agronj2005.0200.
  28. Torres-Sanchez J., J. M. Pena, A. I. de Castro, and F. Lopez-Granados, 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103: 104-113. doi:10.1016/j.compag.2014.02.009.
  29. Xiang, H., and L. Tian, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering 108(2): 174-190. doi:10.1016/j.biosystemseng.2010.11.010.
  30. Yun, H. S., S. H. Park, H. J. Kim, W. D. Lee, K. D. Lee, S. Y. Hong, and G. H. Jung, 2016. Use of unmanned aerial vehicle for multi-temporal monitoring of soybean vegetation fraction. Journal of Biosystems Engineering 41(2): 126-137. doi:10.5307/JBE.2016.41.2.126.
  31. Zhou, X., H. B. Zheng, X. Q. Xu, J. Y. He, X. K. Ge, X. Yao, T. Cheng, Y. Zhe, W. X. Cao, and Y. C. Tian, 2017. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing 130: 246-255. doi:10.1016/j.isprsjprs.2017.05.003.