Fig. 1 Location of study area and sampling sites
Fig. 2 Aerial photos of study site and sample locations
Fig. 3 Rice yield of study sample sites
Fig. 4 Variations of UAV imagery vegetation indices on study sample sites
Fig. 5 Correlation coefficient between vegetation index and rice yield
Fig. 6 Relationship between rice (Sindongji) yield and vegetation indices
Fig. 7 Relationship between rice (Dongjinchal) yield and vegetation indices
Fig. 8 Scatter plot of rice grain yield estimation model
Fig. 9 Vegetation index (GNDVI) in booting period and yield distribution map using UAV imagery on Sindongjin in Site #1, #2
Fig. 10 Vegetation index (GNDVI) in booting period and yield distribution map using UAV imagery on Dongjinchal in Site #3, #4,#5
Table 1 UAV image collecting dates and flight information
Table 2 Vegetation indices related to crop growth monitoring
Table 3 Descriptive statistics of paddy rice grain yield
참고문헌
- Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth, 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing 6(11): 10395-10412. doi:10.3390/rs61110395.
- Choi, M. G., W. Y. Choi, H. K. Park, J. K. Nam, N. H. Back, J. H. Lee, S. S. Kim, and C. K. Kim, 2006. Influences of site-specific N application on rice grain yield and quality in small size paddy field. Korean Journal of Crop Science 51(5): 369-378.
- Chung, S. O., W. K. Park, Y. C. Chang, D. H. Lee, and W. P. Park, 1999. Yield mapping of a small sized paddy field. Journal of Biosystems Engineering 24(2): 135-144.
- Cohen, W. B., 1991. Response of vegetation indices to change in three measures of leaf water stress. Photogrammetric Engineering and Remote Sensing 57(2): 195-202. doi: 10.3390/rs61110395.
- Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak, 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58: 289-298. doi:10.1016/S0034-4257(96)00072-7.
- Gong, H. Y., S. S. Kang, and S. D. Hong, 2011. Estimation of nitrogen uptake and biomass of rice using ground-based remote sensing techniques. Korean Journal of Soil Science and Fertilizer 44(5): 779-787. doi:10.7745/KJSSF.2011.44.5.779.
- Huete, A. R., K. Didan, and Y. Yin, 2002. MODIS vegeation workshop, Missoula, Montana, July 15-18; Terrestrial biophysics and remote sensing (TBRS) MODIS team, University of Arizonal.
- Hunt, E. R., W. D. Hively, S. J. Fujikawa, D. S. Linden, C. S. Daughtry, and G. W. McCarty, 2010. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing 2(1): 290-305. doi:10.3390/rs2010290.
- Jordan, C. F., 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663-666. doi:10.2307/1936256.
- Kim, M. H., C. K. Lee, H. K. Park, J. E. Lee, B. C. Koo, and J. C. Shin, 2008. A study on rice growth and yield monitoring using medium resolution Landsat Imagery. Korea Journal of Crop Science 63(4): 388-393.
- Kim, Y. H., and S. Y. Hong, 2008. Estimation of rice grain protein contents using ground optical remote sensors. Korean Journal of Remote Sensing 24(6): 551-558. https://doi.org/10.7780/kjrs.2008.24.6.551
- Kim, S. H., 2016. A study on the diffusion of Korean agricultural ICT and role of the agricultural cooperative federation using the theory of technology adoption life cycle and chasm. Cooperative Management Review 45: 1-27.
- Na, S. I., S. Y. Hong, C. W. Park, K. D. Kim, and K. D. Lee, 2016. Estimation of highland kimchi cabbage growth using UAV NDVI and Agro-meteorological factors. Korean Journal of Soil Science and Fertilizer 49(5): 420-428. doi:10.7745/KJSSF.2016.49.5.420.
- Nigon, T. J., D. J. Mulla, C. J. Rosen, Y. Cohen, V. Alchanatis, and R. Rud, 2014. Evaluation of the nitrogen sufficiency index for use with high resolution, broadband aerial imagery in a commercial potato field. Precision Agriculture 15: 202-226. doi:10.1007/s11119-013-9333-6.
- Lee, C. K., J. H. Sung, I. G. Jing, S. C. Kim, W. P. Park, Y. B. Lee, and W. K. Park, 2004a. Geo-statistical analysis of growth variability in rice paddy field. Journal of Biosystems Engineering 29(2): 109-120. https://doi.org/10.5307/JBE.2004.29.2.109
- Lee, C. K., M. Umeda, I. G. Jung, J. H Sung, S. C. Kim, W. P. Park, and Y. B. Lee, 2004b. Spatial variability analysis of paddy rice yield in field. Journal of Biosystems Engineering 29(3): 267-274. https://doi.org/10.5307/JBE.2004.29.3.267
- Lee, C. K., Y. Choi, H. J. Kim, S. B. Lee, and C. S. Ryu, 2007. Development of a rice weighing system for head-feed combine. Journal of Biosystems Engineering 32(5): 332-338. https://doi.org/10.5307/JBE.2007.32.5.332
- Lee, K. D., S. I. Na, S. C. Baek, K. D. Park, J. S. Choi, S. J. Kim, H. J. Kim, H. S. Choi, and S. Y. Hong, 2015. Estimating the amount of nitrogen in hairy vetch on paddy fields using unmanned aerial vehicle imagery. Korean Journal of Soil Science and Fertilizer 48(5): 384-390. doi:10.7745/KJSSF.2015.48.5.384.
- Lee, K. D., Y. E. Lee, C. W. Park, S. Y. Hong, and S. I. Na, 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV "Ebee". Korean Journal of Soil Science and Fertilizer 49(6): 731-742. doi:10.7745/KJSSF.2016.49.6.731.
- Lee, K. D., C. W. Park, K. H. So, and S. I. Na, 2017. Selection optimal vegeation indices and regression model for estimation of rice growth using UAV aerial images. Korean Journal of Soil Science and Fertilizer 50(5): 409-421. doi:10.7745/KJSSF.2017.50.5.409.
- Park, J. K., H. J. Lee, and J. W. Hwang, 2005. An analysis of adoption possibility for precision agriculture in Korean rice farms. Korean Journal of Economics 46(4): 1-23.
- Park, J. K., and J. H. Park, 2015. Crops classification using imagery of unmanned aerial vehicle (UAV). Journal of the Korean Society of Agricultural Engineers 57(6): 91-97. doi:10.5389/KSAE.2015.57.6.091.
- Pearson, R. L., and L. D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan, Ann Arbor, MI, 1357-1381.
- Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150. doi:10.1016/0034-4257(79)90013-0.
- Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden, S. C., Mercanti, E. P., Becker, M. (Eds.), Third Earth Resources Technology Satellite-1 Symposium, Technical Presentations, NASA SP-351.
- Schlerf, M., C. Atzberger, and J. Hill, 2005. Remote sensing of forest biophysical variables using HyMap imaging spectometer data. Remote Sensing of Environment 95: 177-194. doi:10.1016/j.rse.2004.12.016.
- Sripada, R. P., R. W. Heiniger, J. G. White, and A. D. Meijer, 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal 98: 968-977. doi:10.2134/agronj2005.0200.
- Torres-Sanchez J., J. M. Pena, A. I. de Castro, and F. Lopez-Granados, 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103: 104-113. doi:10.1016/j.compag.2014.02.009.
- Xiang, H., and L. Tian, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering 108(2): 174-190. doi:10.1016/j.biosystemseng.2010.11.010.
- Yun, H. S., S. H. Park, H. J. Kim, W. D. Lee, K. D. Lee, S. Y. Hong, and G. H. Jung, 2016. Use of unmanned aerial vehicle for multi-temporal monitoring of soybean vegetation fraction. Journal of Biosystems Engineering 41(2): 126-137. doi:10.5307/JBE.2016.41.2.126.
- Zhou, X., H. B. Zheng, X. Q. Xu, J. Y. He, X. K. Ge, X. Yao, T. Cheng, Y. Zhe, W. X. Cao, and Y. C. Tian, 2017. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing 130: 246-255. doi:10.1016/j.isprsjprs.2017.05.003.