Fig. 1. User information process framework
Fig. 2. Research model
Fig. 3. Result of hypothesis tests
Table 1. Operation definition and Measurement items
Table 2. Exploratory factor analysis
Table 3. Results of reliabilities and validity
Table 4. Result of correlation matrix and discriminant validity
Table 5. Second-order model test
Table 6. Summary of hypothesis testing
참고문헌
- T. Bondarouk, E. Parry & E. Furtmueller. (2017). Electronic HRM: four decades of research on adoption and consequences. The InTernaTIonal Journal of human resource management, 28(1), 98-131. DOI : 10.1080/09585192.2016.1245672
- P. van Esch, J. S. Black & J. Ferolie. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215-222. DOI :10.1016/j.chb.2018.09.009
- Oracle. (2018). HR Trends Report 2018. Oracle, p.1-15.
- W. H. Delone & E. R. McLean. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30. DOI : 10.1080/07421222.2003.11045748
- L. F. Pitt, R. T. Watson & C. B. Kavan. (1995). Service quality: a measure of information systems effectiveness. MIS quarterly, 19(2), 173-187. DOI : 10.2307/249687
- Y. Lee & K. A. Kozar. (2006). Investigating the effect of website quality on e-business success: An analytic hierarchy process (AHP) approach. Decision support systems, 42(3), 1383-1401. DOI : 10.1016/j.dss.2005.11.005
- D. Yoon & Kin Tong. (2009). A study of e-recruitment technology adoption in Malaysia. Industrial Management & Data Systems, 109(2), 281-300. DOI : 10.1108/02635570910930145
- K. Y. Tam & S. Y. Ho. (2006). Understanding the impact of web personalization on user information processing and decision outcomes. MIS quarterly, 30(4), 865-890. DOI : 10.2307/25148757
- J. Lee & J. N. Lee. (2009). Understanding the product information inference process in electronic word-of-mouth: An objectivity-subjectivity dichotomy perspective. Information & Management, 46(5), 302-311. DOI : 10.1016/j.im.2009.05.004
- A. Muthitcharoen, P. C. Palvia & V. Grover. (2011). Building a model of technology preference: The case of channel choices. Decision Sciences, 42(1), 205-237. DOI : 10.1111/j.1540-5915.2010.00306.x
- V. Venkatesh. (2006). Where to go from here? Thoughts on future directions for research on individual-level technology adoption with a focus on decision making. Decision Sciences, 37(4), 497-518. DOI : 10.1111/j.1540-5414.2006.00136.x
- T. Kowatsch & W. Maass. (2010). In-store consumer behavior: How mobile recommendation agents influence usage intentions, product purchases, and store preferences. Computers in Human Behavior, 26(4), 697-704. DOI : 10.1016/j.chb.2010.01.006
- Y. Zheng, K. Zhao & A. Stylianou. (2013). The impacts of information quality and system quality on users' continuance intention in information-exchange virtual communities: An empirical investigation. Decision Support Systems, 56, 513-524. DOI : 10.1016/j.dss.2012.11.008
- S. M. Tseng. (2015). Exploring the intention to continue using web-based self-service. Journal of Retailing and Consumer Services, 24, 85-93. DOI : 10.1016/j.jretconser.2015.02.001
- A. Bhattacherjee & C. Sanford. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS quarterly, 30(4), 805-825. DOI : 10.2307/25148755
- T. T. Kircher, C. Senior, M. L. Phillips, P. J. Benson, E. T. Bullmore, M. Brammer & A. S. David. (2000). Towards a functional neuroanatomy of self processing: effects of faces and words. Cognitive Brain Research, 10(1-2), 133-144. DOI : 10.1016/S0926-6410(00)00036-7
- V. Krishnaraju, S. K. Mathew & V. Sugumaran. (2016). Web personalization for user acceptance of technology: An empirical investigation of E-government services. Information Systems Frontiers, 18(3), 579-595. DOI : 10.1007/s10796-015-9550-9
- A. Levitin & T. Redman. (1995). Quality dimensions of a conceptual view. Information Processing & Management, 31(1), 81-88. DOI : 10.1016/0306-4573(95)80008-H
- J. J. Cronin Jr, M. K. Brady & G. T. M. Hult. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments. Journal of retailing, 76(2), 193-218. DOI : 10.1016/S0022-4359(00)00028-2
- H. H. Bauer, T. Falk & M. Hammerschmidt. (2006). eTransQual: A transaction process-based approach for capturing service quality in online shopping. Journal of Business Research, 59(7), 866-875. DOI : 10.1016/j.jbusres.2006.01.021
- K. M. An & Y. C. Lee. (2018). Examining Success Factors of Online P2P Lending Service Using Kano Model and Fuzzy-AHP. Knowledge Management Review, 19(2), 109-132. DOI : 10.15813/kmr.2018.19.2.006
- Z. Yang, S. Cai, Z. Zhou & N. Zhou. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Information & management, 42(4), 575-589. DOI : 10.1016/j.im.2004.03.001
- Y. F. Kuo, C. M. Wu & W. J. Deng. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in human behavior, 25(4), 887-896. DOI : 10.1016/j.chb.2009.03.003
- C. Mang. (2012). Online job search and matching quality. Ifo Working Paper, 147.
- M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald & E. Muharemagic. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1. DOI : 10.1186/s40537-014-0007-7
- C. B. Stone, A. R. Neely & M. L. Lengnick-Hall. (2018). Human Resource Management in the Digital Age: Big Data, HR Analytics and Artificial Intelligence. In Management and Technological Challenges in the Digital Age, CRC Press, 13-42.
- N. Syam & A. Sharma. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135-146. DOI : 10.1016/j.indmarman.2017.12.019
- H. Chen, R. H. Chiang & V. C. Storey. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 36(4), 1165-1188. DOI : 10.2307/41703503
- J. R. Bettman, M. F. Luce & J. W. Payne. (1998). Constructive consumer choice processes. Journal of consumer research, 25(3), 187-217. DOI : 10.1086/209535
- J. Wang & A. Y. Lee. (2006). The role of regulatory focus in preference construction. Journal of Marketing research, 43(1), 28-38. DOI : 10.1509/jmkr.43.1.28
- H. H. Chang & Y. M. Liu. (2009). The impact of brand equity on brand preference and purchase intentions in the service industries. The Service Industries Journal, 29(12), 1687-1706. DOI : 10.1080/02642060902793557
- S. Lee & R. J. Koubek. (2010). The effects of usability and web design attributes on user preference for e-commerce web sites. Computers in Industry, 61(4), 329-341. DOI : 10.1016/j.compind.2009.12.004
- L. C. Cheng & H. A. Wang. (2014). A fuzzy recommender system based on the integration of subjective preferences and objective information. Applied Soft Computing, 18, 290-301. DOI : 10.1016/j.asoc.2013.09.004
- J. Nielsen & J. Levy. (1994). Measuring usability: preference vs. performance. Communications of the ACM, 37(4), 66-76. DOI : 10.1145/175276.175282
- J. R. Bettman & M. A. Zins. (1977). Constructive processes in consumer choice. Journal of Consumer Research, 4(2), 75-85. DOI : 10.1086/208682
- B. Lilly & R. Walters. (2000). An exploratory examination of retaliatory preannouncing. Journal of Marketing Theory and Practice, 8(4), 1-9. DOI : 10.1080/10696679.2000.11501875
- K. Z. Zhou & K. Nakamoto. (2007). How do enhanced and unique features affect new product preference? The moderating role of product familiarity. Journal of the Academy of Marketing Science, 35(1), 53-62. DOI : 10.1007/s11747-006-0011-3
- A. Bahrammirzaee. (2010). A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165-1195. DOI : 10.1007/s00521-010-0362-z
- M. D. Fethi & F. Pasiouras. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European journal of operational research, 204(2), 189-198. DOI : 10.1016/j.ejor.2009.08.003
- G. Shafer. (1987). Probability judgment in artificial intelligence and expert systems. Statistical science, 2(1), 3-16. https://doi.org/10.1214/ss/1177013426
- Y. W. Lee, D. M. Strong, B. K. Kahn & R. Y. Wang. (2002). AIMQ: a methodology for information quality assessment. Information & management, 40(2), 133-146. DOI : 10.1016/S0378-7206(02)00043-5
- S. M. Choi & T. S. Moon. (2015). Impact of ICT Competence on Convergence Performance and the Moderating Effect of Convergence Capabilities. The Journal of Internet Electronic Commerce Resarch 15(1), 159-175.
- J. D. Lee, M. K. Rhee & M. R. Kim. (2018). Experiencing with Splunk, a Platform for Analyzing Machine Data, for Improving Recruitment Support Services in WorldJob+. Journal of Digital Convergence, 16(3), 201-210. DOI : 10.14400/JDC.2018.16.3.201
- K. H. Jeong & H. R. Kim. (2008). Quality Status Comparison and Analysis for the Service Development Direction of Domestic Job Information Site. Journal of The Korea Society of Computer and Information, 13(5), 211-218.
- I. Adjzen & M. Fishbein. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs NJ: Prentice Hall.
- F. D. Davis, R. P. Bagozzi & P. R. Warshaw. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003. DOI : 10.1287/mnsc.35.8.982
- H. Kim & L. S. Niehm. (2009). The impact of website quality on information quality, value, and loyalty intentions in apparel retailing. Journal of interactive marketing, 23(3), 221-233. DOI : 10.1016/j.intmar.2009.04.009
- N. J. Lightner. (2003). What users want in e-commerce design: effects of age, education and income. Ergonomics, 46(1-3), 153-168. DOI : 10.1080/00140130303530
- R. L. Oliver & J. E. Swan. (1989). Consumer perceptions of interpersonal equity and satisfaction in transactions: a field survey approach. Journal of marketing, 53(2), 21-35. DOI : 10.1177/002224298905300202
- S. O. Olsen. (2002). Comparative evaluation and the relationship between quality, satisfaction, and repurchase loyalty. Journal of the academy of marketing science, 30(3), 240-249. DOI : 10.1177/0092070302303005
- A. Parasuraman & C. L. Colby. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of service research, 18(1), 59-74. DOI : 10.1177/1094670514539730
- A. Pearson. S. Tadisina & C. Griffin. (2012). The role of e-service quality and information quality in creating perceived value: antecedents to web site loyalty. Information Systems Management, 29(3), 201-215. DOI : 10.1080/10580530.2012.687311
- S. Sahadev & K. Purani. (2008). Modelling the consequences of e-service quality. Marketing Intelligence & Planning, 26(6), 605-620. DOI : 10.1108/02634500810902857
- V. Venkatesh & F. D. Davis. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. DOI : 10.1287/mnsc.46.2.186.11926
- R. Y. Wang & D. M. Strong. (1996). Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 12(4), 5-33. DOI : 10.1080/07421222.1996.11518099
- B. Xiao & I. Benbasat. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS quarterly, 31(1), 137-209. DOI : 10.2307/25148784
- M. I. Choi. (2019). The effect of information seeking style and news literacy of card news users on recommendation intention: Focused on Technology Acceptance Model (TAM). Journal of Digital Convergence, 10(1), 141-148. DOI : 10.15207/JKCS.2019.10.1.141