참고문헌
- Sajana TK, Ghangrekar MM, Mitra A. 2013. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 57: 101-107. https://doi.org/10.1016/j.aquaeng.2013.09.002
- Official website of the Directorate of Fisheries - Vietnam Ministry of Agriculture and Rural Development: https://tongcucthuysan.gov.vn.
- Boyd CE. 1998. Pond water aeration systems. Aquac. Eng. 18: 9-40. https://doi.org/10.1016/S0144-8609(98)00019-3
- van Rijn J. 1996. The potential for integrated biological treatment systems in recirculating fish culture-a review. Aquac. 139: 181-201. https://doi.org/10.1016/0044-8486(95)01151-X
- Lin Y-F, Jing S-R, Lee D-Y, Wang T-W. 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquac. 209: 169-184. https://doi.org/10.1016/S0044-8486(01)00801-8
- Zou S, Guan L, Taylor DP, Kuhn D, He Z. 2018. Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquac. 497: 74-81. https://doi.org/10.1016/j.aquaculture.2018.07.036
- Marx Sander E, Virdis B, Freguia S. 2018. Bioelectrochemical denitrification for the treatment of saltwater recirculating aquaculture streams. ACS Omega 3: 4252-4261. https://doi.org/10.1021/acsomega.8b00287
- Reimers CE, Tender LM, Fertig S, Wang W. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35: 192-195. https://doi.org/10.1021/es001223s
- Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, et al. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
- Bond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485. https://doi.org/10.1126/science.1066771
- Hong S, Choi Y, Chung T, Song J, Kim H. 2009. Assessment of sediment remediation potential using microbial fuel cell technology. World Acad. Sci. Eng. Technol. 54: 683-689.
- Morris JM, Jin S. 2012. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 213: 474-477. https://doi.org/10.1016/j.jhazmat.2012.02.029
- Sherafatmand M, Ng HY. 2015. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 195: 122-130. https://doi.org/10.1016/j.biortech.2015.06.002
- An J, Kim B, Nam J, Ng HY, Chang IS. 2013. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresour. Technol. 127: 138-142. https://doi.org/10.1016/j.biortech.2012.09.095
- Ewing T, Ha PT, Babauta JT, Tang NT, Heo D, Beyenal H. 2014. Scale-up of sediment microbial fuel cells. J. Power Sources 272: 311-319. https://doi.org/10.1016/j.jpowsour.2014.08.070
- De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W. 2008. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microbial Biotechnol. 1: 446-462. https://doi.org/10.1111/j.1751-7915.2008.00042.x
- Donovan C, Dewan A, Heo D, Beyenal H. 2008. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 42: 8591-8596. https://doi.org/10.1021/es801763g
- Scott K, Cotlarciuc I, Head I, Katuri KP, Hall D, Lakeman JB, et al. 2008. Fuel cell power generation from marine sediments: Investigation of cathode materials. J. Chem. Technol. Biotechnol. 83: 1244-1254. https://doi.org/10.1002/jctb.1937
- Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, et al. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825. https://doi.org/10.1038/nbt716
- Bui TQ. 2010. Standard protocols of rearing shrimps following good aquaculture practice (GAP) (in Vietnamese), pp. 1-17. Ed. Research Institute of Aquaculture No. 1, Bac Ninh, Vietnam.
- Tacon AGJ, Phillips MJ, Barg UC. 1995. Aquaculture feeds and the environment: The asian experience. Water Sci. Technol. 31: 41-59.
- Hasan M. 2000. Presented at the Aquaculture in the third millennium. Technical proceedings of the conference on aquaculture in the third millennium, Bangkok, Thailand.
- Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394. https://doi.org/10.1021/es0525511
- Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, et al. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192. https://doi.org/10.1021/es0605016
- Srinivasan V, Weinrich J, Butler C. 2016. Nitrite accumulation in a denitrifying biocathode microbial fuel cell. Environ. Sci: Water Res. Technol. 2: 344-352. https://doi.org/10.1039/C5EW00260E
- Nguyen TT, Luong TTT, Tran PHN, Bui HTV, Nguyen HQ, Dinh HT, et al. 2015. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode. Microbial Biotechnol. 8: 579-589. https://doi.org/10.1111/1751-7915.12267
- Boon N, Goris J, De Vos P, Verstraete W, Top EM. 2000. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl. Environ. Microbiol. 66: 2906-2913. https://doi.org/10.1128/AEM.66.7.2906-2913.2000
- Muyzer G, de Waal EC, Uitterlinden A. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
- Muyzer G, Teske A, Wirsen CO, Jannasch HW. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172. https://doi.org/10.1007/BF02529967
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Greenberg A, Clesceri LS, Eaton AD. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edn, pp. 5-16 - 5-19. Ed. American Public Health Association, Washington DC
- Vyrides I, Stuckey D. 2009. A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. 100: 979-982. https://doi.org/10.1016/j.biortech.2008.06.038
- Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z. 2005. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39: 5037-5042. https://doi.org/10.1021/es0480668
- Zhang Y, Angelidaki I. 2012. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res. 46: 6445-6453. https://doi.org/10.1016/j.watres.2012.09.022
- Wang A, Cheng H, Ren N, Cui D, Lin N, Wu W. 2012. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Front. Environ. Sci. Eng. 6: 569-574. https://doi.org/10.1007/s11783-011-0335-1
- Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli S, Zanaroli G, et al. 2015. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front. Microbiol. 6: 881. https://doi.org/10.3389/fmicb.2015.00881
- Lovley DR. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497-508. https://doi.org/10.1038/nrmicro1442
- Hien TT, Linh VT, Hai PT. 2016. Bacteria isolated from the sediment of a bioelectrochemical system installed in a simulated aquaculture pond operated with brackish water. VNU J. Nat. Sci. Technol. 32: 233-241.
- Madhaiyan M, Poonguzhali S, Kwon S-W, Sa T-M. 2009. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 59: 2904-2908. https://doi.org/10.1099/ijs.0.009811-0
- Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, et al. 1999. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewatertreatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov. , Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int. J. Syst. Evol. Microbiol. 49: 1817-1827. https://doi.org/10.1099/00207713-49-4-1817
- Higashioka Y, Kojima H, Watanabe M, Fukui M. 2013. Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate-reducing bacterium isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 63: 761-765. https://doi.org/10.1099/ijs.0.043356-0
- Widdel F, Bak F. 1992. Gram-Negative Mesophilic Sulfate-Reducing Bacteria, pp. 3352-3378. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds.), The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Ed. Springer New York, New York, NY
- Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, et al. 2007. Microbial resource management: the road to go for environmental biotechnology. Eng. Life Sci. 7: 117-126. https://doi.org/10.1002/elsc.200620176
- Ryan MP, Pembroke JT. 2018. Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9: 480-493. https://doi.org/10.1080/21505594.2017.1419116
- Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, et al. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6: 285-292. https://doi.org/10.1002/elsc.200620121
- Puig S, Serra M, Coma M, Balaguer M, Colprim J. 2011. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci. Technol. 64: 904-909 https://doi.org/10.2166/wst.2011.401
- Yoshie S, Makino H, Hirosawa H, Shirotani K, Tsuneda S, Hirata A. 2006. Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Appl. Environ. Microbiol. 72: 182-189.
- Yoshie S, Noda N, Tsuneda S, Hirata A, Inamori Y. 2004. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl. Environ. Microbiol. 70: 3152-3157. https://doi.org/10.1128/AEM.70.5.3152-3157.2004
- Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, et al. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549: 269-272. https://doi.org/10.1038/nature23679
- Koch H, van Kessel MA, Lucker S. 2019. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Environ. Microbiol. 103: 177-189.
- Gajaraj S, Hu Z. 2014. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere 117: 151-157. https://doi.org/10.1016/j.chemosphere.2014.06.013
- Xiao B, Luo M, Wang X, Li Z, hen H, Liu J, et al. 2017. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process. Waste Manag. 69: 346-352. https://doi.org/10.1016/j.wasman.2017.06.046
- Borea L, Puig S, Monclús H, Naddeo V, Colprim J, Belgiorno V. 2017. Microbial fuel cell technology as a downstream process of a membrane bioreactor for sludge reduction. Chem. Eng. J. 326: 222-230. https://doi.org/10.1016/j.cej.2017.05.137
- Boyd CE, Schmittou HR. 1999. Achievement of sustainable aquaculture through environmental management. Aquac. Economics Manag. 3: 59-69. https://doi.org/10.1080/13657309909380233
- Camargo JA, Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int. 32: 831-849. https://doi.org/10.1016/j.envint.2006.05.002
- Wei J, Liang P, Huang X. 2011. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102: 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019
피인용 문헌
- A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Con vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1906.06052
- Biological Reduction of Organic Matter in Buji River Sediment (Shenzhen, China) with Artificial Oxygenation vol.12, pp.12, 2019, https://doi.org/10.3390/w12123592
- Sediment microbiota in polyculture of shrimp and fish pattern is distinctive from those in monoculture intensive shrimp or fish ponds vol.787, 2019, https://doi.org/10.1016/j.scitotenv.2021.147594