고 방사선 환경을 위한 상용 디지털-아날로그 컨버터의 감마선 조사 시험 결과 및 분석

The Irradiation Test Result and Analysis of a Commercial Digital-to-Analog Converter for Using in Harsh Radiation Environments

  • 권인용 (한국원자력연구원 원자력ICT연구부)
  • Kwon, Inyong (Nuclear ICT Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2019.01.27
  • 심사 : 2019.03.07
  • 발행 : 2019.03.31

초록

This work presents irradiation test results of a commercial digital-to-analog converter (DAC) which is an essential component widely used in circuits and systems to convert natural signals from digital bits. Especially, a DAC requires a radiation tolerance in nuclear applications, for instance a nuclear black box which can store and transfer necessary data observed the status of nuclear reactors in accident situations like Fukushima. The selected DAC is AD5433 of 10-bit and 10 MHz for multipurpose applications such as waveform generators, analog processing, instruments, programmable amplifiers and attenuators, digitally controlled calibration, composite video, and ultrasound. The test PCB includes two design-under-test (DUT) DACs controlled by a microcontroller communicating with a PC. We observed the DUTs for 21 hours in the facility of high gamma energy irradiation at KAERI. The 10V DAC outputs reached 3% of an allowable error after 51 and 48 mins at the irradiation dose of 846 and 825 Gy, respectively. In the environment of severe accidents, electrical components for observing reactor behaviors should be survived up to 5 kGy in total ionizing dose for approximately 72 hours that is minimum time to mitigate the accidental situation as soon as possible. However, the DACs were operated under 1 kGy, that is, we need a better DAC specialized for the nuclear applications required such harsh environments.

키워드

과제정보

DAC 실험 구성과 방사선 조사 시험에 도움을 준 충남대학교 이준호 학생, 한국원자력연구원의 김덕현, 신동성 연구원들께 감사인사를 드립니다. 본 연구는 과학기술정보통신부 지원으로 수행되었습니다(NRF-2017M2A8A4017933, 2016M2A8A1952801).

참고문헌

  1. Chung Y-H, Yen C-W, Tsai P-K and Chen B-W. 2018. A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme. IEEE T. VLSI. SYST. 26(10):1989-1998. https://doi.org/10.1109/TVLSI.2018.2849008
  2. Cressler J and Mantooth H. 2013. Extreme Enviornment Electronics, CRC Press.
  3. Fan H, Li D, Zhang K, Cen Y, Feng Q, Qiao F and Heidari H, 2018. A 4-Channel 12-Bit High-Voltage Radiation-Hardened Digital-to-Analog Converter for Low Orbit Satellite Applications. IEEE T. CIRCUITS-I. 65(11):3698-3706.
  4. Fleetwood ZE, Member S, Kenyon EW, Lourenco NE, Jain S, Zhang EX, Member S, England TD, Cressler JD, Schrimpf RD and Fleetwood DM. 2014. Advanced SiGe BiCMOS technology for multi-mrad TID-hard electronic systems. IEEE Trans. Device Mater. Reliab. to Be Publ. 14:844-848, doi:10.1109/TDMR.2014.2331980.
  5. Gromov V, Annema AJ, Kluit R, Visschers JL and Timmer P. 2007. A radiation hard bandgap reference circuit in a standard 0.13 ㎛ CMOS technology. IEEE Trans. Nucl. Sci. 54:2727-2733, doi:10.1109/TNS.2007.910170.
  6. Kim S, Lee J, Kwon I and Jeon D. 2018. TID-Tolerant Inverter Designs for Radiation-Hardened Digital Systems. Nucl. Instrum. Meth. A. doi: 10.1016/j.nima.2018.10.151.
  7. Manghisoni M, Ratti L, Re V, Speziali V, Traversi G and Candelori A. 2003. Comparison of Ionizing Radiation Effects in 0.18 and 0.25 ㎛ CMOS Technologies for Analog Applications. IEEE Trans. Nucl. Sci. 50:1827-1833, doi:10.1109/TNS.2003.820767.
  8. Re V, Manghisoni M, Ratti L, Speziali V and Traversi G. 2005. Total ionizing dose effects on the noise performances of a 0.13 ㎛ CMOS technology. Radiat. Eff. Data Work. (REDW), 2006 IEEE. 53:1599-1606, doi:10.1109/TNS.2006.871802.
  9. Saks NS, Ancona MG and Modolo JA. 1986. Generation of interface states by ionizing radiation in very thin MOS oxides. IEEE Trans. Nucl. Sci. 33:1185-1190, doi:10.1109/TNS.1986.4334576.
  10. Schwank JR, Shaneyfelt MR, Fleetwood DM, Felix JA, Dodd PE, Paillet P and Ferlet-Cavrois V. 2008. Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55:1833-1853, doi:10.1109/TNS.2008.2001040.