DOI QR코드

DOI QR Code

Accumulation of inorganic arsenic, and growth rate by changing of phosphate concentration in Hizikia fusiforme

인산염 농도 변화에 따른 톳(Hizikia fusiforme)의 무기비소(As (V)) 축적 및 생장률 변동

  • Hwang, Un-Ki (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, NIFS) ;
  • Choi, Hoon (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, NIFS) ;
  • Choi, Min-Kyu (Marine Environment Research Division, NIFS) ;
  • Kim, Min-Seob (Department of Fundamental Environment Research, National Institute of Environmental Research) ;
  • Choi, Jong-Woo (Department of Fundamental Environment Research, National Institute of Environmental Research) ;
  • Heo, Seung (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, NIFS) ;
  • Lee, Ju-Wook (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, NIFS)
  • 황운기 (국립수산과학원 서해수산연구소 자원환경과) ;
  • 최훈 (국립수산과학원 서해수산연구소 자원환경과) ;
  • 최민규 (국립수산과학원 어장환경과) ;
  • 김민섭 (국립환경과학원 환경측정분석센터) ;
  • 최종우 (국립환경과학원 환경측정분석센터) ;
  • 허승 (국립수산과학원 서해수산연구소 자원환경과) ;
  • 이주욱 (국립수산과학원 서해수산연구소 자원환경과)
  • Received : 2019.06.05
  • Accepted : 2019.06.17
  • Published : 2019.06.30

Abstract

In this study, we performed an analysis of the accumulation of inorganic arsenic and growth rate with changes in phosphate concentration in Hizikia fusiforme. When exposed to inorganic arsenic for fourteen days, we found that the collection of inorganic arsenic hardly increased at high phosphate concentrations (2 mg L-1). However, when the phosphate concentration was low (0.02 mg L-1), accumulation of inorganic arsenic increased. Additionally, H. fusiforme decreased in a growth rate of 14.5% in low phosphate concentration (0.02 mg L-1) and fell in a growth rate of 30% when exposed to inorganic arsenic (10 ㎍ L-1). H. fusiforme cannot distinguish between phosphate and inorganic arsenic. Thus, when phosphate concentration was lower, the inorganic arsenic accumulation increased, and accumulated inorganic arsenic inhibited photosynthesis and cell division, reducing the growth rate. H. fusiforme is known to have higher inorganic arsenic accumulation than other seaweeds. Therefore, various studies are needed to secure the food safety of H. fusiforme which is an essential aquaculture species in Korea.

인산염 농도 변화에 따른 Hizikia fusiforme의 무기비소 축적량 및 생장률을 분석하였다. 무기비소에 14일간 노출하였을 때, 2 mg L-1의 높은 인산염 농도에서 무기비소 축적량이 증가하지 않았다. 하지만 인산염 농도가 0.02 mg L-1로 낮은 경우에 무기비소 축적량이 3배 이상 증가하였다. 또한 H. fusiforme는 인산염 농도가 낮은 경우 생장률이 14.5%, 무기비소(10 ㎍ L-1)에 노출되었을 경우 생장률이 대조구 대비 30% 감소하였다. H. fusiforme는 인산염과 무기비소를 구분하지 못하여 인산염의 농도가 낮은 경우 무기비소 축적량이 증가하게 되고, 축적된 무기비소는 광합성 저해 및 세포분열을 방해하여 생장률을 억제한다. 특히 우리나라의 대표적인 양식생물인 H. fusiforme는 다른 해조류에 비해 상대적으로 무기비소 축적량이 높다고 알려져 있기 때문에, H. fusiforme의 식품안전성을 확보하기 위해 다양한 연구가 필요하다.

Keywords

References

  1. Almela C, MJ Clemente, D Velez and R Montoro. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 44:1901-1908. https://doi.org/10.1016/j.fct.2006.06.011
  2. Areco MM and MDS Afonso. 2010. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloid Surf. B -Biointerfaces 81:620-628. https://doi.org/10.1016/j.colsurfb.2010.08.014
  3. Besada V, JM Andeade, F Schultze and JJ Gonzalez. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 75:305-313. https://doi.org/10.1016/j.jmarsys.2008.10.010
  4. Borak J and HD Hosgood. 2007. Seafood arsenic: implications for human risk assessment. Regul. Toxicol. Pharmacol. 47:204-212. https://doi.org/10.1016/j.yrtph.2006.09.005
  5. Dhargalkar VK and XN Verlecar. 2009. Southern ocean seaweeds: A resource for exploration in food and drugs. Aquaculture 287:229-242. https://doi.org/10.1016/j.aquaculture.2008.11.013
  6. Garman GD, MC Pillai and GN Cherr. 1994. Inhibition of cellular events during early algal gametophyte development: effects of select metals and an aqueous petroleum waste. Aquat. Toxicol. 28:127-144. https://doi.org/10.1016/0166-445X(94)90025-6
  7. Hughes MF, BD Beck, Y Chen, AS Lewis and DJ Thomas. 2011. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123:305-332. https://doi.org/10.1093/toxsci/kfr184
  8. Jarvis TA and GK Bielmyer-Fraser. 2015. Accumulation and effects of metal mixtures in two seaweed species. Comp. Biochem. Phys. C 171:28-33.
  9. Jung HJ, DH Kim, MH Jeong, CW Lim, KB Shim and YJ Cho. 2017. Mineral analysis and nutritional evaluation according to production area of laver Porphyra tenera, japanese kelp Saccharina japonicus, sea mustard Undaria pinnatifida and Hijiki Sargassum fusiforme in Korea. J. Kor. Soc. Fish. Mar. Edu. 29:1624-1632.
  10. Kim HJ and MS Chung. 2018. Inhibitory Effects of crude fucoidan extract from Hizikia fusiformis against norovirus causing foodborne disease. Korean J. Food Cook. Sci. 34:519-526. https://doi.org/10.9724/kfcs.2018.34.5.519
  11. KSIS. 2019. Report on the status of seawater quality. Korean Statistical Information Service, Statistics Korea. http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01&statId=1980019&themaId=Q#SelectStatsBoxDiv. Accessed January 20, 2019.
  12. Lee JW, HM Ryu, S Heo and UK Hwang. 2016. Toxicity assessment of heavy metals (As, Cr and Pb) using the rates of survival and population growth in marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 34:193-200. https://doi.org/10.11626/KJEB.2016.34.3.193
  13. Levy JL, JL Stauber, MS Adams, WA Maher, JK Kirby and DF Jolley. 2005. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ. Toxicol. Chem. 24:2630-2639. https://doi.org/10.1897/04-580R.1
  14. Ma Z, L Lin, M Wu, H Yu, T Shang and T Zhang. 2018. Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture 497:49-55. https://doi.org/10.1016/j.aquaculture.2018.07.040
  15. Madson AD, W Goessler, SN Pedersen and KA Francesconi. 2000. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J. Anal. At. Spectrom. 15:657-662. https://doi.org/10.1039/b001418o
  16. Mebeau S and J Fleurence. 1993. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci. Technol. 4:103-107. https://doi.org/10.1016/0924-2244(93)90091-N
  17. MOF. 2019. Fisheries Statistics. Ministry of Oceans and Fisheries. https://www.fips.go.kr/p/S020303/#. Accessed January 20, 2019.
  18. NIFS. 2017. Standard guidelines for the qualitative and quantitative determination of arsenic species in marine environment and marine life. National Institute of Fisheries Science.
  19. Omar HH. 2008. Biosorption of copper, nickel and manganese using non-living biomass of marine alga, Ulva lactuca. Pak. J. Biol. Sci. 11:964-973.
  20. Ott FD. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Va. J. Sci. 16:205-218.
  21. Park GY, DA Kang, M Davaatseren, C Shin, GJ Kang and MS Chung. 2019. Reduction of total, organic, and inorganic arsenic content in Hizikia fusiforme (Hijiki). Food Sci. Biotechnol. 28:615-622. https://doi.org/10.1007/s10068-018-0501-3
  22. Pell A, G Kokkinis, P Malea, SA Pergantis, R Rubio and JF Lopez-Sanchez. 2013. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece). Chemosphere 93:2187-2194. https://doi.org/10.1016/j.chemosphere.2013.08.003
  23. Roh KH, EK Hwang and CH Sohn. 2000. Effects of transplantation on selected local population for Hizikia cultivation. J. Aquaculture 13:101-105.
  24. Ronan JM, DB Stengel, A Raab, J Feldmann, L O’Hea, E Bralatei and E McGovern. 2017. High proportions of inorganic arsenic in Laminaria digitata but not in Ascophyllum nodosum samples from Ireland. Chemosphere 186:17-23. https://doi.org/10.1016/j.chemosphere.2017.07.076
  25. Schiewer S and MH Wong. 1999. Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol. 33:3821-3828. https://doi.org/10.1021/es981288j
  26. Senthilkumar K, P Manivasagan and J Venkatesan. 2013. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int. J. Biol. Macromol. 60:366-374. https://doi.org/10.1016/j.ijbiomac.2013.06.030
  27. Taylor VF and BP Jackson. 2016. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6-13. https://doi.org/10.1016/j.chemosphere.2016.08.004
  28. Villares R, E Carral and C Carballeira. 2017. Differences in metal accumulation in the growing shoot tips and remaining shoot tissue in three species of brown seaweeds. Bull. Environ. Contam. Toxicol. 99:372-379. https://doi.org/10.1007/s00128-017-2138-y
  29. Wells ML, P Potin, JS Craigie, JA Raven, SS Merchant, KE Helliwell, AG Smith, ME Camire and SH Brawley. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29:949-982. https://doi.org/10.1007/s10811-016-0974-5
  30. Yokoi K and A Konomi. 2012. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharmacol. 63:291-297. https://doi.org/10.1016/j.yrtph.2012.04.006