DOI QR코드

DOI QR Code

Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent

양이온성 고분자(polyethylenimine)가 코팅된 알지네이트/폐바이오매스 복합 흡착소재를 사용한 유해 미세조류 Microcystis aeruginosa의 제거

  • Kim, Hoseon (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Byun, Jongwoong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Choi, In Tae (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Yun Hwan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Sok (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Choi, Yoon-E (Division of Environmental Science and Ecological Engineering, Korea University)
  • 김호선 (고려대학교 환경생태공학부) ;
  • 변종웅 (고려대학교 환경생태공학부) ;
  • 최인태 (고려대학교 환경생태공학부) ;
  • 박윤환 (고려대학교 환경생태공학부) ;
  • 김석 (고려대학교 환경생태공학부) ;
  • 최윤이 (고려대학교 환경생태공학부)
  • Received : 2019.12.26
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

As the occurrence of harmful algal blooms (HABs) have become severe in precious water resources, the development of efficient harmful algae treatment methods is considering as an important environmental issue for sustainable conservation of water resources. To treat HABs in water resources, various conventional physical and chemical methods have been utilized and showed treatment efficiency, However, these methods can lead to discharging of cyanotoxins into the water bodies by chemical or physical algal cell lysis or destruction. Thus, to overcome this limitation, the development of safe HABs treatment methods is required. In the present study, adsorption technology was investigated for the removal of harmful algal species, Microcystis aeruginosa from aqueous phases. Industrial waste biomass, Corynebacterium glutamicum biomass was valorized as biosorbent (PEI-modified alginate/biomass composite fiber; PEI-AlgBF) for M. aeruginosa through immobilization with alginate matrix and cationic polymer (polyethylenimine; PEI) coating. The functional groups characteristic of PEI-Alg was determined using FT-IR analysis. By adsorption process used PEI-AlgBF, 52 and 67% of M. aeruginosa could be removed under the initial density of M. aeruginosa 200×104 cells mL-1 and 50×104 cells mL-1, respectively. As the increasing surface area of PEI-AlgBF, the removal efficiency was increased. In addition, we could find that adsorptive removal of M. aeruginosa has occurred without any M. aeruginosa cell lysis and destruction.

본 연구에서는 바이오매스 폐기물인 Corynebacterium glutamium을 Alg를 이용한 고정화와 PEI 표면개질 과정을 통하여 유해 미세조류인 Microcystis aeruginosa를 제거할 수 있는 흡착소재인 PEI-AlgBF를 개발하였다. 녹조의 발생단계에 상관없이 PEI-AlgBF는 수계로부터 M. aeruginosa를 성공적으로 제거할 수 있었으며 유해조류 제거과정에서 M. aeruginosa 세포의 파괴를 유발하지 않았다. 흡착소재의 표면적은 M. aeruginosa의 제거효율에 매우 큰 영향을 주는 주요인자로 확인할 수 있었다. PEI-AlgBF를 사용한 M. aeruginosa 흡착/제거 방식은 기존 기술에 비하여 환경영향성이 낮기 때문에 보다 안전하고 안정적인 유해조류의 제어 방식이 될 것이다.

Keywords

References

  1. Akar ST, D Yilmazer, S Celik, YY Balk and T Akar. 2013. On the utilization of a lignocellulosic waste as an excellent dye remover: Modification, characterization and mechanism analysis. Chem. Eng. J. 229:257-266. https://doi.org/10.1016/j.cej.2013.06.009
  2. Choi SB and YS Yun. 2006. Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J. Hazard. Mater. 138:378-383. https://doi.org/10.1016/j.jhazmat.2006.05.059
  3. Chorus I, IR Falconer, HJ Salas and J Bartram. 2000. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Env. Heal. B 3:323-347. https://doi.org/10.1080/109374000436364
  4. Chung C, M Lee and EK Choe. 2004. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58:417-420. https://doi.org/10.1016/j.carbpol.2004.08.005
  5. Deng S and YP Ting. 2005. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 39:2167-2177. https://doi.org/10.1016/j.watres.2005.03.033
  6. Dixit F, B Barbeau and M Mohseni. 2019. Removal of Microcystin-LR from spiked natural and synthetic waters by anion exchange. Sci. Total Environ. 655:571-580. https://doi.org/10.1016/j.scitotenv.2018.11.117
  7. Fahnenstiel GL, DF Millie, J Dyble, RW Litaker, PA Tester, MJ McCormick, R Rediske and D Klarer. 2008. Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron. Aquat. Ecosyst. Health Manag. 11:190-195. https://doi.org/10.1080/14634980802092757
  8. Ghoul M, M Bacquet and M Morcellet. 2003. Uptake of heavy metals from synthetic aqueous solutions using modified PEI - silica gels. Water Res. 37:729-734. https://doi.org/10.1016/S0043-1354(02)00410-4
  9. Guan C, X Guo, G Cai, H Zhang, Y Li, W Zheng and T Zheng. 2014. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species. Biol. Control 76:79-86. https://doi.org/10.1016/j.biocontrol.2014.05.007
  10. Hadjoudja S, V Deluchat and M Baudu. 2010. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 342:293-299. https://doi.org/10.1016/j.jcis.2009.10.078
  11. Han SI, Y Park and YE Choi. 2018. Application of antimicrobial peptides against Microcystis aeruginosa to control harmful algal blooms. Korean J. Environ. Biol. 36:601-609. https://doi.org/10.11626/KJEB.2018.36.4.601
  12. Kim S, C Lee, TT Vo, SI Han and YE Choi. 2016. Eco-friendly control of harmful algal bloom species using biological predators. Korean J. Environ. Biol. 34:91-96. https://doi.org/10.11626/KJEB.2016.34.2.091
  13. Kim S, MH Song, W Wei and YS Yun. 2015. Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J. Hazard. Mater. 283:657-662. https://doi.org/10.1016/j.jhazmat.2014.10.008
  14. Kim S, MS Jeon, JY Kim, SJ Sim, JS Choi, J Kwon and YE Choi. 2018. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber. Biodegradation 29:349-358. https://doi.org/10.1007/s10532-018-9840-2
  15. Leon C and GA Penuela. 2019. Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia. Toxicon 167:38-48. https://doi.org/10.1016/j.toxicon.2019.06.010
  16. Li J, R Li and J Li. 2017. Current research scenario for microcystins biodegradation - A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 595:615-632. https://doi.org/10.1016/j.scitotenv.2017.03.285
  17. Liu Y, Q Cao, F Luo and J Chen. 2009. Biosorption of $Cd^{2+},\;Cu^{2+},\;Ni^{2+}\;and\;Zn^{2+}$ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater. 163:931-938. https://doi.org/10.1016/j.jhazmat.2008.07.046
  18. Mao J, SW Won and YS Yun. 2013. Development of poly(acrylic acid)-modified bacterial biomass as a high -performance biosorbent for removal of Cd (II) from aqueous solution. Ind. Eng. Chem. Res. 52:6446-6452. https://doi.org/10.1021/ie4003156
  19. Merel S, D Walker, R Chicana, S Snyder, E Baures and O Thomas. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59:303-327. https://doi.org/10.1016/j.envint.2013.06.013
  20. Paerl HW, RS Fulton, PH Moisander and J Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1:76-113. https://doi.org/10.1100/tsw.2001.138
  21. Ramrakhiani L, R Majumder and S Khowala. 2011. Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption. Chem. Eng. J. 171:1060-1068. https://doi.org/10.1016/j.cej.2011.05.002
  22. Vijayaraghavan K and YS Yun. 2007. Chemical modification and immobilization of Corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Ind. Eng. Chem. Res. 46:608-617. https://doi.org/10.1021/ie061158g
  23. Vijayaraghavan K and YS Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26:266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
  24. Volesky B. 2007. Biosorption and me. Water Res. 41:4017-4029. https://doi.org/10.1016/j.watres.2007.05.062
  25. Willner I, Y Eichen, AJ Frank and MA Fox. 1993. Photoinduced electron-transfer processes using organized redox-functionalized bipyridinium-polyethylenimine-titania colloids and particulate assemblies. J. Phys. Chem. 97:7264-7271. https://doi.org/10.1021/j100130a024
  26. Won SW, S Kim, P Kotte, A Lim and YS Yun. 2013. Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt (IV) recovery from acidic solutions. J. Hazard. Mater. 263:391-397. https://doi.org/10.1016/j.jhazmat.2013.09.019
  27. Won SW and YS Yun. 2008. Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigment. 76:502-507. https://doi.org/10.1016/j.dyepig.2006.10.011
  28. Yan H, L Yang, Z Yang, H Yang, A Li and R Cheng. 2012. Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions. J. Hazard. Mater. 229:371-380. https://doi.org/10.1016/j.jhazmat.2012.06.014
  29. Zieba-Palus J. 2017. The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes. Forensic Sci. Criminol. 2:1-9.